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Preface

In most of our physics courses we focus on the fundamental laws of Nature and how they
dictate the properties of elementary particles, the forces that they interact according to,
and the way they evolve in time. We learn via Newton/Lagrange/Hamilton how to describe
the motion of classical particles described by thier positions and momenta, and how to
use the Schrödinger equation to understand the evolution of a wave function, and how
electromagnetic fields propagate, and so on. It is all extremely satisfying.

And yet... as we go about our lives the physical things we want to understand about the
world are often on a very different level of description. As I wait for an electric kettle to heat
the water for my coffee every morning, I don’t really care about the positions and momenta
of the water molecules – I want to know things like “Is that water hot yet, and how much
more energy do I need to add to get it to boil?” When I’m feeling particularly tired perhaps
I catch myself asking even more basic questions: “What do I really mean by ‘hot’? Will that
steam burn my hand? Why, in fact, are some of these molecules organized into ‘water’ and
others ‘steam’? What physics leads to me calling water ‘wet’? Also...”

How can we even begin to answer these kinds of questions? If I hand you a blob con-
taining Avogadro’s number of particles and I tell you all of the masses and positions and
momenta and interactions, would you be able to tell me anything about that blob? Could we
understand what would happen if we poked it? Melted it? Would we know what color it was?
Whether it was sticky? Magnetic? We like to think that the basic perspective of physics is
that the world around us is understandable1, so giving up is not an option. Dutifully writing
down the coupled evolution equations for 1023 particles doesn’t really feel like an option
either.

The goal of this course, as schematically illustrated in Fig. 1, is to begin to make maps
that connect our understanding of the microscopic world with the behavior of matter at the
macroscopic scale. As suggested by its name, the broad field of Statistical Physics is in the
business of building probabilistic descriptions, and relies on the limit of large numbers of par-
ticles involved so that these probabilistic maps nevertheless correspond to incredibly precise,
deterministic predictions. In this class we’ll learn how to use these maps to understand the
collective properties of matter, and how rich and interesting phenomena can arise from even
simple building blocks.

This very-much-work-in-progress set of notes is currently divided into three parts. The
first part deals with the basic phenomenology of macroscopic systems, and will begin with
a review of Thermodynamics. Having understood how we expect bulk phases of matter to
behave, and the interrelations we expect of various quantities when a system is “in equilib-

1John J. Hopfield, [1]
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Figure 1: Making probabilistic maps between the microscopic and macroscopic
world

rium” (whatever that means), we will discuss mean field versions of what happens when a
system experiences a phase transition. We will talk about both discontinuous phase transi-
tions (as when water abruptly freezes in to solid ice) and continuous ones (as when a magnet
is brought below a critical temperature in the absence of an external field), and we will get a
glimpse of a remarkable universal behavior that seemingly disparate physical systems exhibit
when they get close to their critical points. We will talk about Landau’s phenomenological
approach to explaining this universality, we will learn about critical scaling near phase tran-
sitions, and we will close the first part of the course with our first tentative steps towards
figuring out what might be going on (via the static scaling hypothesis and Kadanoff’s block
spin transformation idea).

The second part covers fairly standard concepts in statistical physics, albeit in a somewhat
compressed form. We will introduce a bit of probability theory so that we have not only the
language but the mathematical foundations we’ll need to understand where thermodynamic
descriptions might come from. From there we’ll chart a traditional path through kinetic
theory to a classical ensemble picture of statistical mechanics. We will mirror that logic
in developing quantum statistical mechanics, developing the technology to (a) understand
classical statistical mechanics as a limit of the quantum version, (b) be able to describe
non-interacting Bose and Fermi systems, and (c) see our first example of a phase transition
– Bose-Einstein condensation.

The third part returns to classical systems, but now in the context of interacting degrees
of freedom. We will look at cluster and virial expansions, and think about perturbative
approaches to systems with interactions. We will then introduce the essential ideas of the
RG approach to understanding critical behavior. The lecture notes will close with a brief
look at fluctuations and out-of-equilibrium behavior.
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Sources and Comments

This is a set of lecture notes prepared while teaching PHYS 526: Statistical Physics (Emory
University, Spring 2020 - 2023), and then adapted for this course. It is more verbose than
what I will actually write on the board, but far from a comprehensive textbook. I am sure
there are both typos and errors in this document, so please email any corrections to:

daniel.m.sussman@emory.edu

The content of these notes is obviously not original to me. They represent a merging
of some of the sources that I learned stat mech from, along with many other resources.
As I say on the course syllabus, “Graduate-level statistical physics is a subject with many
available textbooks and wide disagreements about which one(s) to use.” For these notes I
have particularly drawn from:

1. Pathria & Beale (Statistical Mechanics, 3rd edition; Primary source) [2],

2. Kardar (Statistical physics of particles [3] and fields [4]; Primary source(s)),

3. Goldenfeld (Lectures on Phase Transitions and the Renormalization Group [5] ; general
secondary source, especially for the chapter on phase transitions),

4. Preskill (Chapter 10 of his Quantum Information notes for discussion on information
entropy and mutual information.) [6]

5. David Tong (Chapter 2 of his lecture notes on Kinetic Theory [7], Chapter 1 of his
notes on Statistical Physics [8]

6. Huang (Chapter 5 for some parts of hydrodynamics. Also, the structure of Huang’s
text – which is, not surprisingly, echoed in Kardar – inspired the original order in which
these lecture notes covered topics. That order is now... quite different.) [9]

7. Sethna (Entropy, Order Parameters, and Complexity [10]; general source)

8. Kadanoff (Statistical Physics: Statics, Dynamics and Renormalization; [11] general
source)

As I write I sometimes leave little notes to myself for parts to improve / add / elaborate
on. Those comments will appear like this, so if you see that kind of text you can safely ignore
it.

Here’s an example: I know I should be globally more consistent about ~q vs ~r, especially the
contrast between how I define coordinates for Kinetic Theory vs. the section on Interacting
Stat Mech.
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Chapter 1

Thermodynamics2

1.1 Introduction

Our education in physics is so steeped in conservation laws that it’s a bit odd to think about
how mysterious the concepts of “energy” and “heat” have been for so much of human history.
Were all things just different manifestations of fire, as at some ancient Greeks allegedly
thought? Was heat itself a material substance – caloric fluid – that could flow? Was cold the
absence of caloric, or was it a separate material substance – frigoric – that flowed in its own
right? Historically, the founding documents3 of thermodynamics – Carnot’s “Reflections on
the Motive Power of Fire” and Kelvin’s “Account of Carnot’s Theory of the Motive Power
of Heat” – grew out of a 19th century desire to understand steam engines and improve their
efficiency. Steam engines and gas laws and Carnot Cycles might be where thermodynamics
came from, but they are far from what it is. Just as calculus grew to be so much more than
counting pebbles, the framework of thermodynamics is vastly larger and more important
than it’s grimy, coal-fired origins suggest. It has, amusingly, been called everything from a
“village witch4” to a “consistency machine” [14].

For the purposes of the (almost exclusively equilibrium) systems we will think about in
this class, thermodynamics is a fundamentally phenomenological description of the properties
of macroscopic systems. The “equilibrium” part of this qualification simply means that we
will be interested in systems whose essential properties don’t change over some window of
time in which we choose to observe them – a definition that should feel extremely subjective,
because it is! The “phenomenological” part is quite important: thermodynamics is not a
theory built up from first principles. It is, instead, based on an attempt to build a self-
consistent mathematical framework that describes the empirically observed behavior of the
systems in the world around us. It does this by formulating four key “laws” that together
suffice to explain those observations.

2This word seems to have been first used – assiduously hyphenated as “thermo-dynamic” – in Ref. [12]
3If you’d rather trace the history of thermodynamics farther back to things like Boyle’s law, be my guest.
4“If physical theories were people, thermodynamics would be the village witch. Over the course of three

centuries she smiled quietly as other theories rose and withered, surviving major revolutions in physics, like
the advent of general relativity and quantum mechanics. The other theories find her somewhat odd, somehow
different in nature from the rest, yet everyone comes to her for advice, and no-one dares to contradict her.”
Goold et al. [13]
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14 CHAPTER 1. THERMODYNAMICS

Finally, what kinds of “essential” or “macroscopic” properties will we think about? What
low-dimensional set of observables will we use to characterize systems? We will choose various
appropriate thermodynamic coordinates for different systems – the length L and tension F in
a wire, or the magnetization M and field B for a magnet, or the volume V and the pressure
P for a gas5 – along with some coordinates we will use to talk about the thermal state of
the system. In the rest of this quick review of thermodynamics, we’ll introduce the laws of
thermodynamics, see the beautiful mathematical framework they lead to, and we’ll think
about how the various thermodynamic coordinates depend on each other (or co-evolve).

1.2 The laws of thermodynamics

1.2.1 0th Law

The “0th” law is not so much part of the original three laws of thermodynamics as an axiom
added later to make them logically complete6, the zeroth law is a statement of the transitivity
of (thermal) equilibrium.

0th law: If two systems, A and B, are separately in equilibrium with system
C, then they are in equilibrium with each other

The zeroth law suggests that different kinds of thermal equilibrium are not specialized to
the details of the physical systems under study – A could be a fluid, B could a piston filled
with gas, and C could be a magnet – and apparently we need some additional thermodynamic
coordinate to describe an equilibrium system that tells us the “type” of equilibrium the
system is in. We don’t know what properties this additional thermodynamic coordinate has
yet, but let’s provisionally agree to call that coordinate the temperature of the system7.
Empirically, of course, phenomenological properties of dilute gases were known well before
the formulation of thermodynamics – going at least back to Boyle in the 1660’s – suggesting
that even if we don’t yet know the properties of temperature, the zeroth law already gives
us a way to measure it: just use a sufficiently dilue gas as a thermometer, and compare
the result to some known reference system. For instance, letting P and V be the pressure
and volume of the dilute-thermometer that we bring into thermal equilibrium with various
things, we could agree to measure the temperature of a system as

T (◦K) ≡ 273.16
(

lim
P→0

(PV )system

)
/
(

lim
P→0

(PV )ice-water-steam

)
. (1.1)

5A word whose etymology is delightful: “...therefore, by the Licence of a Paradox, for want of a name,
I have called that vapour, Gas, being not far severed from the Chaos of the Auncients.” J.B. van Helmont
[15]. Gas ←→ chaos...makes sense.

6Maxwell got things started by asserting that there is only one kind of heat; the zeroth law was only
more formally introduced as “Characteristic 4” by Caratheodory [16] or as the “zeroth law” by Fowler [17]

7One could also dress this more formally: the zeroth law establishes an equivalence relation between
mathematical sets, partitioning the space of all possible thermodynamic coordinates into into mutually
distinct subsets; we label those subsets by something, and we’ll call that something “temperature.”
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Clunky, and perhaps only empirically supported as a good definition, but unambiguous!

1.2.2 1st Law

The first law is really just a statement about the conservation of energy, adapted to the fact
that “heat” is a kind of energy. To walk through a quasi-historical formulation, let’s first
think about “adiabatically isolating” a system, by which we mean somehow preventing the
system from exchanging heat with the outside world. We’ll then write the

1st law: If the state of an adiabatically isolated system is changed by work,
the amount of work is only a function of the initial and final coordinates of
the system.

From the fact that there are conditions under which the work done, ∆W , is path- and
mechanism-independent, we infer the existence of another state function8, the internal en-
ergy. Letting X refer to the state of the system, we now have the internal energy of the
system, E(X), the first law says that for an adiabatically isolated system

∆W = E(Xf )− E(Xi) (1.2)

When thinking about a gas, we might have originally thought that we needed to care about
two basic macroscopic properties – the pressure and volume. Thanks to the first two laws
we now know we should also care about temperature and internal energy, but we have yet
to understand the potential interrelations between all of these quantities.

Note, by the way, that some of the powerful content of the first law comes when we
violate the conditions it comes with. If we do work on a system that is not adiabatically
isolated we now expect ∆W 6= Ef −Ei. Since we still believe that energy is a perfectly nice
conserved quantity, this lets us define heat, Q, via

∆Q = (Ef − Ei)−∆W. (1.3)

Although E might be a state function, it is clear that ∆Q and ∆W are not independent
functions of state, so we will adopt the following notation:

dE(X) = d̄Q+ d̄W, (1.4)

Where differentials like dE indicate an exact differential and ones like d̄Q indicate an inexact
differential – i.e., indicate that Q is path-dependent9. We will typically think about systems
being operated on in a simplified setting where the work is, in fact, path-independent. Before
we see that (in the next section), let’s finish meeting the other laws of thermodynamics.

8Intuition from classical mechanics: the path independence of the work we do in pushing a frictionless
object up and down a hill lets us deduce the existence of a potential energy

9Sign convention for this class: work and heat add energy to the system.



16 CHAPTER 1. THERMODYNAMICS

1.2.3 2nd Law

Why does heat flow from hot to cold? Why are there no perpetual motion machines that
function by turning water into ice while doing work? I think there is something kind of
delightful in how practical concerns about burning coal leads directly to the more abstract
concept of entropy and implies its inevitable increase. The original formulations of the 2nd
Law were due to Clausius and Kelvin, and they wrote it as

Kelvin’s statement of the 2nd law: No process is possible whose sole result
is the complete conversion of heat to work (“No ideal engines”)

Clausius’ statement of the 2nd law: No process is possible whose sole
result is the transfer of heat from cold to hot (“No ideal refrigerators”)

It is probably not clear why these statements are equivalent to each other, or what they
have to do with entropy. In Appendix A we trace a path from these statements, through
Carnot cycles, to:

Clausius’ Theorem: For any cyclic process, with path parameterized by s∮
d̄Q(s)

T (s)
≤ 0, (1.5)

where the heat d̄Q(s) is an amount of heat delivered to the system by a reservoir or
machine at temperature T (s).

A cyclic process is one in which the state of the system at the beginning and end of some
process is the same (i.e., the system can be described by the same set of thermodynamic
coordinates before and after). Some of the power of Clausius’ theorem come from applying it
not to a general cyclic process by to a reversible process – during a process one can reverse
the direction of the process (e.g., compressing rather than expanding a gas) by reversing all
of the inputs and outputs of and on the system (e.g., by cooling rather than heating the
system, or doing work on it rather than letting it do work on its environment). During a
reversible process the system stays in thermodynamic equilibrium – they must be done so
slowly that after an infinitesimal change in the inputs or outputs the system can adjust to
stay in equilibrium. There are three main conceptual things that this careful setup buys us:

1. Entropy! We first apply Clausius’ Theorem to a reversible transformation, as promised.
By applying it to both the forward and the reversed version fo the cycle, we learn that

±
∮
d̄Qrev(s)

T (s)
≤ 0. (1.6)
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Since both the directions give an integral that is less than or equal to zero, the integral must
vanish. If we consider breaking up the cycle into segments from state A to state B and back,
we se that the integral corresponding to traversing part of the cycle from A to B, the one
corresponding to traversing the other part of the cycle from B to A “backwards” must then
be equal: ∫ B

A

d̄Qrev,1(s)

T1(s)
=

∫ B

A

d̄Qrev,2(s)

T(s)
. (1.7)

That is, this integral is independent of the path taken! Its value must depend only on
the value of some function evaluated at the endpoints:∫ B

A

d̄Qrev(s)

T (s)
= SB − SA, (1.8)

where we’ve used the letter S to defined some quantity that is a function of the state at the
end points. Let’s call that quantity “entropy10,” which we have defined up to some arbitrary
constant of integration.

2. Entropy increases for irreversible transformations Suppose we make an irre-
versible change as we go from state A to B, but then complete the cycle by making a
reversible transformation from B back to A. This is some kind of cyclic process, so Clausius’
theorem tells us that ∫ B

A

d̄Q

T
+

∫ A

B

d̄Qrev

T
≤ 0⇒

∫ B

A

d̄Q

T
≤ SB − SA. (1.9)

This tells us, in differential form, that d̄Q ≤ TdS for any transformation. For an adiabatic
process (d̄Q = 0) we’ve now learned that dS ≥ 0. Thus, as a system approaches equilibrium,
apparently the arrow of time points in the direction of increasing entropy, since changes in
a system’s internal state can only increase S. This “entropy increases” principle is probably
what most people think the statement of the 2nd law is.

3. The 1st Law, revisited For a reversible process we see that we can now compute
the heat from d̄Qrev = TdS. Thus, for a reversible transformations we can write (from
dE = d̄W + d̄Qrev),

dE = d̄W + TdS. (1.10)

10“We might call S the transformational content of the body, just as we termed the magnitude U its
thermal and ergonal content. But as I hold it to be better to borrow terms for important magnitudes from
the ancient languages, so that they may be adopted unchanged in all modern languages, I propose to call
the magnitude S the entropy of the body, from the Greek word τρoπη, transformation. I have intentionally
formed the word entropy so as to be as similar as possible to the word energy ; for the two magnitudes to be
denoted by these words are so nearly allied in their physical meanings, that a certain similarity in designation
appears to be desirable.” – Clausius [18]. For all that talk of borrowing terms for important magnitudes from
ancient languages, note that Clausius tried to name the unit of entropy “the Clausius,” a calorie per degree
Celsius.
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1.2.4 3rd Law

The 3rd law has a different flavor than the other laws of thermodynamics. The 1st law is
something we recognize as a statement about the conservation of energy (along with “heat”
being a form of energy), and neatly fits into the framework of what we know about how the
microscopic world works. The 0th and 2nd laws are ultimately about an irreversible march
towards equilibrium states – they don’t have microscopic analogs, but in the later chapters
we’ll try to derive them as a consequence of the statistical properties of large numbers of
particles. The 3rd law is different, in that its validity actually depends on what the underlying
microscopic laws are – if classical mechanics was all there was, the 3rd law would not be true!
In this course we will not deal too much with quantum systems, and so we will be a bit
briefer in our treatment of it.

Figure 1.1: Thoughts about quantum mechanics, as communicated in a student presentation
in Spring 2023

To set it up the final law of thermodynamics, lets use what we learned from the second law
to compute the difference in entropy between two state points at some constant temperature,
doing reversible transformations to compute ∆S =

∫
d̄Qrev/T . With this, the 3rd law is:

Nernst-Simon statement of the 3rd law: The change in entropy associated with
a system undergoing a reversible, isothermal process goes to zero as the temperature
approaches 0K:

lim
T→0

∆S(T )→ 0. (1.11)
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“Stronger” Nernst statement: The entropy of all systems at absolute zero is a
universal constant, which we will define to be the zero point of the entropy scale:
limT→0 S(X,T ) = 0.

The third law has several important consequences, e.g.: not only the entropy by deriva-
tives of the entropy vanish at zero temperature, various response functions we are about to
meet (heat capacities, thermal expansivities) vanish at zero temperature, and the need for
an infinite number of operations to actually reach zero temperature in a real system.

The the “vanishing heat capacity” consequence above was (basically) Nernst’s original
formulation of the 3rd law! Much disagreement ensued, and the third law’s validity and
proper framing was hotly contested. This is because of what we said above: the validity of
the third law actually depends on what the microscopic laws are. For instance, we’ll soon
see statistical mechanical expressions like S = k ln g, where g is a measure of the degeneracy
of states. The third law tells us that we must have, from the vanishing of entropy, g = O(1)
as T → 0. But, in classical mechanics, that is simply not true (trues me: we’ll think more
about the degeneracy of a classical ideal gas soon enough). On the other hand, we know that
as T → 0, CM is not an appropriate description of the microscopic behavior of particles. It
should be hardly surprising, I suppose, that a law whose validity actually rests on quantum
mechanics was not well-understood or properly justified before QM itself was.

1.3 Characterizing simple physical systems thermody-

namically

Just as thinking about reversible processes let us equate heat, d̄Q, with a quantity TdS, we
will make a powerful approximation and define the notion of a quasi-static transformation:
one which is done so slowly that the system is maintained in equilibrium everywhere along the
path from its initial to final states. For such a transformation, since the system is maintained
in equilibrium the whole time, the work done loses any path dependence. Thus, the work
can be related directly to changes in the system’s thermodynamic coordinates.

To be a bit more concrete, let’s divide the state functions, X, into generalized displace-
ments x and generalized forces J . Some particularly common generalized coordinates are
listed in Table 1.3; note that the displacements are generally extensive (scale with the size
of the system) and the forces are generally intensive (are not proportional to system size).

System generalized force generalized displacement

Wire tension F length L
Film surface tension σ area A
Fluid pressure −P volume V

Magnet field B magnetization M

Then, in a quasi-static transformation we have

d̄W =
∑
i

Jidxi (1.12)
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Combined with Eq. 1.10, this gives for a reversible, quasi-static transformation

dE =
∑
i

Jidxi + TdS. (1.13)

No big deal, just the most important expression in thermodynamics! Note that this already
tells us quite a lot about how different thermodynamic coordinates are interrelated. In gen-
eral, if the quantities f , x, and y are mutually related, we can write

df(x, y) =
∂f

∂x

∣∣∣∣
y

dx+
∂f

∂y

∣∣∣∣
x

dy. (1.14)

In the context of this form of the first law, we see that derivatives of entropy with respect
to other coordinates tell us about the temperature and the various conjugate forces:

∂S

∂E

∣∣∣∣
{xi}

=
1

T
.

−∂S
∂xi

∣∣∣∣
{E,xj 6=i}

=
Ji
T
. (1.15)

From Eq. 1.13 we see that if there n ways of doing mechanical and chemical work to a
system (the n pairs {Ji, xi}), then we need n + 1 independent coordinates to describe its
equilibrium states: entropy is one more extensive generalized “displacement” and it has T as
it’s conjugate generalized “force”. The fact that we need n + 1 coordinates (one from each
pair of coordinates) and not 2(n+1) is because the displacements and forces are interrelated
via the internal energy and entrop, as indicated in Eq. 1.15 above. We have substantial
freedom in choosing which of each displacement/force pair we pick, and we will later exploit
that freedom in defining different thermodynamic ensembles – Do we want to consider this
gas at fixed volume, or at fixed pressure? At fixed energy, or fixed temperature? Etc.

1.3.1 Physical properties and response functions

We can now use this thermodynamic framework to encode the behavior of a system – as
measured by changes in thermodynamic coordinates in response to external probing – via a
variety of response functions. Some particularly important varieties include the following.

Force constants measure how much generalized displacements change in response to
generalized forces11. An example of a force constant is the isothermal compressibility of a
gas :

κT = − 1

V

∂V

∂P

∣∣∣∣
T

,

where here we have adopted the (thermodynamically) common notation where a subscripted
variable is a reminder of what we are holding constant as we measure or define some quantity.
Here “isothermal” = “constant temperature.”

Thermal responses quantify how a system responds to changes in temperature. An
example is the isobaric expansivity of a gas (i.e., at constant pressure):

αP =
1

V

∂V

∂T

∣∣∣∣
P

.

11The classical mechanics analog you can have in mind are spring constants
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Heat capacities quantify how much heat is needed to change the temperature of a
system, C = d̄Q

dT
. What you choose to hold constant when you measure a heat capacity is

quite important; consider, for instance, the heat capacities for a gas a constant V and at
constant P :

CV =
d̄Q

dT

∣∣∣∣
V

=
dE − d̄W

dT

∣∣∣∣
V

=
dE + PdV

dT

∣∣∣∣
V

=
∂E

∂T

∣∣∣∣
V

.

CP =
d̄Q

dT

∣∣∣∣
P

=
dE − d̄W

dT

∣∣∣∣
P

=
dE + PdV

dT

∣∣∣∣
P

=
∂E

∂T

∣∣∣∣
P

+ P
∂V

∂T

∣∣∣∣
P

.

If we further are considering an ideal gas we could note that its energy depends only on its
temperature, so ∂E

∂T

∣∣
V

= ∂E
∂T

∣∣
P

and we see that CP is always larger than CV , as some of the
heat in the constant pressure case will be used in changing the volume:

Comment: Joule’s free expansion experiment

Joule observed12 that if you take an extremely dilute, adiabatically isolated gas, and let it
expand from Vi to Vf , then the initial and final temperatures are the same: Tf = Ti = T . The
system was adiabatically isolated, so ∆Q = 0, and no work was done, so ∆W = 0, hence
the energy of the system is unchanged: ∆E = 0. From this, we can conclude that in an ideal
gas the internal energy (which could, in principle, have depended on its pressure and volume
and temperature) actually depends only on temperature: E(P, V, T ) = E(T ).

You may have wondered, when I said above that CP > CV , how I knew anything about the
relative magnitudes of ∂E

∂T

∣∣
P

and ∂E
∂T

∣∣
V

without calculating anything. Well, since E depends

only on T , ∂E
∂T

∣∣
V

= ∂E
∂T

∣∣
P

, not only justifying that comment but also allowing us to simplify
the heat capacity expressions:

CP − CV = P
∂V

∂T

∣∣∣∣
P

=
PV

T
= NkB. (1.16)

where I’ve used the ideal gas law to, for the first time, introduce our old friend: Boltzmann’s
constant, kB = 1.38064852× 10−23J/K.

1.4 Comments

Add a little section – we’ll mostly be using simple gases and magnets as examples for the rest
of the class, but here are some fun examples of “weirder” macroscopic systems understood
thermodynamically. Add some comments on non-eq thermo,

1.5 Various thermodynamic potentials

Mechanical equilibrium occurs at a minimum of a potential energy. Similarly, thermal equi-
librium similarly occurs at the extremum of an appropriately defined thermodynamic poten-
tial. For example, in our discussion of Clausius’ Theorem and the 2nd Law (Sec. 1.2.3) we

12Before Joule, this observation was previously (first?) presented Gay-Lussac in 1806 [19].
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found that the entropy of an adiabatically isolated system increases after any change until
it reaches a maximum in equilibrium – although we usually work in the energy ensemble,
one could work with an “entropy potential” and define equilibrium states via its maxima.
What about systems that are not adiabatically isolated? Or systems which are subject to
mechanical work? In this section we will define a handful of thermodynamic potentials that
we will frequently want to think about. Briefly, before doing so, it may be useful to think
about a purely mechanical analog of the manipulations we are about to do.

So, suppose we have a mass on a spring connected to a fixed all. Let x be the deviation
of the masses position away from the equilibrium rest length of the spring, and let the spring
potential be U(x) = 1

2
kx2. Clearly, the state of mechanical equilibrium is at the spring’s rest

length, x = 0. What happens if we impose an external force, J , on the mass – what will the
new state of mechanical equilibrium position be?

I trust you have already thought of at least one of several ways of answering that question.
One convenient approach is to define a kind of net energy that encompasses both the spring
energy and the external work:

H(x, J) =
1

2
kx2 − Jx,

and find where the variation of this energy with respect to x vanishes:

∂H

∂x
= 0⇒ xeq = J/k. (1.17)

In equilibrium, them, we have a kind of augmented energy (the “enthalpy” whose value is

H(xeq, J) =
−1

2k
J2.

Had I already known this functional form of the enthalpy for our system in mechanical
equilibrium, I see that I could have computed the equilibrium position by computing

xeq = −∂H(J)

∂J
.

We are about to see this pattern repeatedly, but for functions of more variables.

1.5.1 The geometry of Legendre transformations

Clean up In a previous course you may have heard that, in the above, we are using Legen-
dre transformations to move between different natural variables depending on the physical
situation we find ourselves in. For instance: for isothermal transformations with no external
work we look at the Helmholtz free energy, which has natural variables F (x, T ). The equi-
librium values of the conjugate variables can then by found by partial differentiation: e.g.,
the equilibrium force and entropy can be found from F by

Ji =
∂F

∂xi

∣∣∣∣
T,xj 6=i

and S = − ∂F

∂T

∣∣∣∣
x

. (1.18)

I probably said “Legendre transformation” a lot during lecture in reference to the proce-
dure of, e.g., starting with E and moving to H = E − Jx; you probably saw these not only
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in your thermodynamics coursework but also your advanced classical mechanics (in deriving
the Hamiltonian formalism from Lagrangian mechanics, or vice versa). I almost certainly
won’t cover this in class, but if you haven’t seen the geometrical interpretation of Legendre
transformations then this section might be of interest.

The formal problem is one in which we are told a quantity is a function of some variables,
f = f(x0, x1, . . . , xn), but what we really want is to consider the derivatives of f ,

yi ≡
∂f

∂xi
,

as the independent variables. An obvious example is, in fact, the desire to go from thinking
about the energy to thinking about the Helmholtz free energy! The energy has entropy as
an independent variable, and if you’re sitting in a lab doing any experiment I challenge
you to measure anything as a function of entropy! In contrast, measuring as a function of
temperature? Even your professor could manage that once in a while.

Figure 1.2: (Left) a target curve f = f(x). (Right) families of curves that satisfy
f = f(∂f/∂x). Inset: Apparently (hilariously), the only known portrait of Legendre [20, 21].

Let’s consider just the case of a function of a single variable, f = f(x), with y = ∂f/∂x
being the slope of the curve. We want to think of y as the independent variable, but we lose
information if we just consider f as a function of the slopes y. This can be most readily seen
by looking at Fig. 1.2: we cannot uniquely reconstruct f even if we know the values of y, as
any of the blue curves in the figure (or any other shifted version of the target curve) would
satisfy the relation f = f(y).

When we actually draw these pictures, I think it becomes clear what is missing. To take
the slope as the independent parameter while keeping all of the information encoded in f(x),
we also need to know something like “where does each of the tangent curves to f(x) intercept
the axis?” As illustrated in Fig. 1.3, a relation for the intercept along the f axis, φ, as a
function of the slopes y would allow us to completely and uniquely reconstruct the curve
f(x), and hence let us use y as our independent variable without losing any information
encoded in the original equation. That is:

φ = φ(y) is equivalent to f = f(x).
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Figure 1.3: (Left) a target curve f = f(x). (Right) families of curves that satisfy
f = f(∂f/∂x)

All that remains is to figure out what the relation φ(y) actually is given a relation f(x).
The mathematical operation we want is, after all, the Legendre transformation! Given a
tangent line through the point (x, f) with slope y and intercept φ, clearly

y =
f − φ
x− 0

⇒ φ = f − yx, (1.19)

and we take this to be our definition of φ, the Legendre transform of f . The inverse problem
– recovering f = f(x) if we are given φ = φ(y) – is quite symmetric. Taking the differential
of the equation above and using df = ydx we have

dφ = df − ydx− xdy = −xdy

⇒ −x =
dφ

dy
(1.20)

Hopefully you see the connection between Eq. 1.19 and the way we moved between
different thermodynamic potentials. Turning back to thermodynamics, you might wonder if
there are any limits on the Legendre transformations we are allowed to perform. That is,
for each set of conjugate force/displacement variables, can we always transform to choose
whichever of the pair we want to use as our independent variable? It turns out: no.; let’s see
why

1.5.2 Thermodynamic potentials

Enthalpy

Precisely in analogy with our mechanical example above, if a system is adiabatically isolated
(d̄Q = 0) but comes to equilibrium under a constant external force, we define our potential
of interest to be the enthalpy :

H = E − J · x. (1.21)
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Variations in this quantity for quasistatic and reversible processes are given by

dH = dE − d(J · x) = TdS + J · dx− x · dJ − J · dx = TdS − x · dJ . (1.22)

Note that in general the work added to the system at constant J is d̄W ≤ J · δx (where
equality occurs for reversible processes). By the first law using our d̄Q = 0 condition, we have
dE ≤ J · dx, which means that δH ≤ 0 as a system approaches equilibrium – in considering
equilibrium states in this condition we are looking for minima of the enthalpy.

Helmholtz Free energy:

What if we consider a system in the absence of any mechanical work (d̄W = 0), but which is
allowed to exchange energy with the rest of the universe so that it undergoes transformations
at constant temperature? For this situation we define the Helmholtz free13 energy14

F = E − TS, (1.23)

which has variations for quasistatic and reversible processes given by

dF = dE − d(TS) = TdS + J · dx− SdT − TdS = −SdT + J · dx. (1.24)

Note that Clausius’ theorem says that at constant T the heat added to the system is
constrained by d̄Q ≤ TdS. Making use of our d̄W = 0 condition, we have dE = d̄Q ≤ TdS,
so δF ≤ 0 – in considering equilibrium states in this set up we are looking for minima of the
free energy.

Gibbs Free Energy:

What if the system is undergoing an isothermal transformation in the presence of mechanical
work done at constant external force? We define the Gibbs free energy by

G = E − TS − J · x, (1.25)

which has variations given by

dG = dE − d(TS)− d(J · x) = · · · = −SdT − x · dJ . (1.26)

Note that in this case, we have both d̄W ≤ J · δx and d̄Q ≤ TdS, so δG ≤ 0 – again, we
are looking for minima.

13Certainly this has dimensions of energy, but why are we calling it a “free” energy? In this case, free
means “available to do work”, as follows: Suppose you have a engine operating with a hot source and a cold
sink at a particular temperature, TC . It takes in an amount of energy E = QH , and must discharge QC into
the sink, which we can write as discharging an entropy S = QC/TC . In the process it can do useful work
W = QH −QC = E − TCS, a combination we see is the same as the Helmholtz free energy.

14Many textbooks – and the IUPAC [22], suggest using the symbol A for this quantity. The A stands for
“arbeit,” which translates to “work.” Seeing as we are already using the word “work” for something else,
this seems silly. Perhaps if every other free energy was a different language’s translation of the “work” I’d
find this convention more amusing.
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Grand Potential:

Traditionally “chemical work” – adding more of some chemical species, or reacting species
together and releasing energy in the process, etc. – is treated separately from mechanical
work... for chemical equilibrium in the case of no mechanical work, we define the Grand
potential by

G = E − TS − µ ·N , (1.27)

where the N refer to the number of particles of different chemical species, and µ refers to
their chemical potentials. Variations in G satisfy

dG = −SdT + J · dx−N · dµ. (1.28)

1.5.3 Thermodynamic stability

We saw above that in equilibrium we are extremizing different thermodynamic potentials.
For instance, in the mechanical analog of a particle equilibrating on some potential energy
landscape, it would not be enough to find points of stable mechanical equilibrium by ∂H

∂x
= 0

– maxima of the enthalpy would be unstable! – but we also require that we are at a minima:
∂2H
∂x2

> 0.
The thermodynamic generalization of this involves simultaneously considering variations

in each pair of conjugate thermodynamic coordinates we are using to define our system,
leading to

δJ · δx+ δN · δµ+ δTδS ≥ 0 (1.29)

as the condition for thermodynamic stability.
This has some useful consequences. For instance, we immediately are told the sign of all

of the response functions for equilibrium systems! If we hold everything fixed except for, say,
one of the generalized displacements, the equation above immediately says that

∂xi
∂Ji

∣∣∣∣
T,xj 6=i

≥ 0.

For instance: in the context of the isothermal compressibility of a equilibrium gas state, we
instantly know from thermodynamic stability that

κT,N = − 1

V

∂V

∂P

∣∣∣∣
T,N

must be positive.
Some consequences are a bit more subtle. Later in this course we’ll look for the critical

point of a gas, which we will identify as a point where ∂P
∂V

∣∣
T

= 0 at some particular value of
temperature. If we assume that the isotherm can be written as an analytic expansion15 then
the variation in pressure on the critical isotherm could be written as

δP =
∂P

∂V

∣∣∣∣
T

δV +
1

2

∂2P

∂V

∣∣∣∣
T

δV 2 + · · · (1.30)

15Which seems innocuous enough – we write down Taylor series approximations all the time, right? Right?
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Apparently the condition −δPδV ≥ 0 tells us that if we find point where ∂P
∂V

∣∣
T

= 0, ther-

modynamic stability requires that ∂2P
∂V

∣∣∣
T

= 0, too. We’ll use this pair of equations in Ch. 2

to begin our exploration of critical points and phase transitions.

1.6 Extensivity, Gibbs-Duhem relations, and Maxwell

relations

re-write / clean up Understanding the thermodynamic properties of systems sometimes in-
volves an intricate dance – transforming from one potential to another in an effort to relate
the quantity or derivative or response function one wants to know about to one which is (for
one reason or another) easier to calculate. As a simple example: it’s often easier to calculate
CV for some system theoretically, but easier to actually measure CP experimentally. In this
section we meet a few of the standard tricks of the trade.

1.6.1 Extensivity and Gibbs-Duhem

Let’s look at the differential for E, including chemical work:

dE = TdS + J · dx+ µ · dN . (1.31)

In general the extensive quantities are proportional to the size of the system, which we can
write mathematically as

E(λS, λx, λN ) = λE(S,x,N ). (1.32)

Let’s take the above and differentiate with respect to λ and then evaluate at λ = 1. This
gives

∂E

∂S

∣∣∣∣
x,N

S +
∂E

∂xi

∣∣∣∣
S,xj 6=i,N

xi +
∂E

∂Nα

∣∣∣∣
S,x,Nβ 6=α

Nα = E(S,x,N ). (1.33)

Note that the partial derivates here are (in order) T , Ji, and µα. This leads to what some
people write as the fundamental equation of thermodynamics:

E = TS + J · x+ µ ·N . (1.34)

Please note that this is not a requirement – not all systems have energies that are extensive
– and so this equation does not have the same standing as the differential form we write
the 1st law in; it is simply a statement about the behavior of “most things.” However, for
extensive systems we can combine equations 1.31 and 1.34 to get a constraint on allowed
variations of the intensive coordinates:

SdT + x · dJ +N · dµ = 0, (1.35)

which is the Gibbs-Duhem relation. Notice that this puts a constraint on the ensembles
you are allowed to transform into: for extensive systems you cannot use only the intensive
coordinates, because the intensive coordinates are not all independent.
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Isothermal compressibility and the grand potential

As an example of the kind of connections between different thermodynamic quantities that
we can derive, let’s suppose we have a gas in a system in which we allow particle number
to fluctuate. The differential of the grand potential is dG = −SdT − PdV − Ndµ, so we

know that the particle number is N = − ∂G
∂µ

∣∣∣
T,V

. Perhaps surprisingly, derivatives of the

particle number with respect to µ can give you the same information as the isothermal
compressibility, which we usually think of as characterizing how the volume of the system
changes in response to changes in pressure at constant temperature.

To see this, let’s first define v = V/N , in therms of which we can write

∂N

∂µ

∣∣∣∣
T,V

=
∂(V ·N/V )

∂µ

∣∣∣∣
T,V

= V
∂v−1

∂µ

∣∣∣∣
T,V

=
−V
v2

∂v

∂µ

∣∣∣∣
T,V

.

Now, for this system the Gibbs-Duhem relation for this system tells us that

0 = SdT +Ndµ− V dP,

which implies that at constant T we have dµ = vdP . Thus, we can relate partial derivatives
with respect to µ to those with respect to P :

∂N

∂µ

∣∣∣∣
T

=
−V
v2

N

V

∂v

∂P

∣∣∣∣
T

.

We can express the isothermal compressibility in terms of v as

κT =
−1

v

∂v

∂p

∣∣∣∣
T

,

finally giving us a connection between the curvature of the grand potential and one of these
response functions:

− ∂2G
∂µ2

∣∣∣∣
T

=
∂N

∂µ

∣∣∣∣
T

=
N2

V
κT (1.36)

1.6.2 Maxwell relations

“Maxwell relations” follow from combining thermodynamic relationships with the basic prop-
erties of partial derivatives. We already saw in Eq. 1.14 that for mutually related f , x, and
y, we have

df(x, y) =
∂f

∂x

∣∣∣∣
y

dx+
∂f

∂y

∣∣∣∣
x

dy;

we will then combine this with symmetry of second derivations,

∂

∂x

∂f

∂y
=

∂

∂y

∂f

∂x
, (1.37)

to relate various thermodynamic derivatives.
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Example

For instance, let’s start with dE = TdS + Jidxi. We can immediately write

T =
∂E

∂S

∣∣∣∣
x

and Ji =
∂E

∂xi

∣∣∣∣
S,xj 6=i

, (1.38)

and the equality of mixed partials then tells us

∂2E

∂S∂xi
=

∂T

∂xi

∣∣∣∣
S

=
∂Ji
∂S

∣∣∣∣
x

. (1.39)

The last equality there is usually what is called a Maxwell relation.

Strategy for deriving Maxwell relations

There are several tricks to remembering how to rapidly find the Maxwell relation relevant
to a particular expression. Logically, though, it’s not so hard to always construct them on
the fly. Suppose someone asks you to find a Maxwell relation for

∂A

∂B

∣∣∣∣
C

, (1.40)

as long as A and B are not conjugate pairs (in which case, see the Gibbs-Duhem example
above) we’ll find a Maxwell relation by: (1) write down the fundamental expression for dE,
(2) transform it so that B and C are differentials whereas A is not, and (3) profit.
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Worked example of finding Maxwell relations: I want to know (∂µ/∂P )|T for an
ideal gas.

Step 1 We write
dE = TdS − PdV + µdN. (1.41)

Step 2 We note that µ is already in a position to appear in first derivatives. Moving
on,

d(E + PV ) = TdS + V dP + µdN (1.42)

d(E + PV − ST ) = −SdT + V dP + µdN. (1.43)

We did not really care what the name of (E + PV − ST ) was (the Gibbs Free Energy, I
guess), let’s just call it Y . Clearly

µ =
∂Y

∂N

∣∣∣∣
T,P

and V =
∂Y

∂P

∣∣∣∣
T,N

, (1.44)

so
∂µ

∂P

∣∣∣∣
N

=
∂V

∂N

∣∣∣∣
P

. (1.45)

Step 3 We’re done.

1.7 Geometry, thermodynamics, and classical mechan-

ics

It’s outside the scope of the course to really go into this, but you deserve to have at least
been pointed in the direction of a very different, much more geometrical16 view of what
is happening in all of these thermodynamic manipulations. This whole section needs to be
written!

A common complaint – spanning generations of scientists [24] – is that there is something
fundamentally ugly and fussy about the mathematical notation we constantly carry around
in our thermodynamic calculations. In contrast to, say, the beautiful mathematical structure
of classical mechanics, thermodynamic manipulations feel simultaneously mathematically
simple yet obscure. This is probably because in the course of deriving various thermodynamic
relations we have a shifting set of variables whose (in)dependence seems to change over
the course of a calculation, requiring us to decorate our equations with reminders of what

16“Algebra is the offer made by the devil to the mathematician. The devil says: I will give you this powerful
machine, it will answer any question you like. All you need to do is give me your soul: give up geometry and
you will have this marvelous machine” [23]
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thermodynamic coordinates are being held fixed at every step. This is a shame, as there
are in fact deep links between the mathematical structure of thermodynamics and that of
classical mechanics, all with a beautiful geometrical underpinning. I won’t explain all of this,
but let me merely provoke you with the following.

First, let’s stare at a pair of easily derived Maxwell relations:

∂T

∂V

∣∣∣∣
S

= − ∂P

∂S

∣∣∣∣
V

;
∂S

∂V

∣∣∣∣
T

=
∂P

∂T

∣∣∣∣
V

. (1.46)

We might not love the notation, but we know what it means. For instance, we look at the left-
most partial derivative above and internally translate it as “at this moment we are thinking
of the temperature as a function of the independent variables volume and the entropy, and
we take the derivative of the temperature with respect to the volume holding entropy fixed.”
Clunky, but fine.

Next, let’s stare at something we (perhaps) feel more kinship with: Hamilton’s equations
for a particle on a line with position q, momentum p, and governed by a Hamiltonian H:

∂p

∂t

∣∣∣∣
q

= − ∂H

∂q

∣∣∣∣
t

;
∂q

∂t

∣∣∣∣
p

=
∂H

∂p

∣∣∣∣
t

. (1.47)

Do you find your self objecting to this? Is your mind rebelling17 at the unfamiliar notation?
You would have rather I had written things like dp

dt
rather than ∂p

∂t

∣∣
q
, but that’s only because in

classical mechanics you are used to unambiguously knowing what the independent variables
are at all times! After getting over your discomfort and staring for longer, you may notice
that if we simple relabel the variables in Eq. 1.47, sending p → T , t → V , q → S, and
H → P we recover exactly the Maxwell relations above.

Is this a coincidence? Would your answer to that change if I were to remind you that
Hamilton’s principle function18 A for this one-dimensional problem has as its total differential

dA =
∂A

∂q
dq +

∂A

∂t
dt = pdq −Hdt?

It’s almost as though we could invent a Legendre transformation to the function X = A−pq
and derive Hamilton’s equations using exactly the same logic we used to derive the Maxwell
relation [25]!

There are indeed rich connections here, and although exploring them is tangential to the
goals of this course you deserve to know it is there! The history here goes back (at least) to
Carathéodory’s use of Pfaffians in his attempt to axiomatize thermodynamics [16, 26], and
continues with Posson bracket formulations of thermodynamics [27] and approaches based on
contact geometry [28]. If you are the kind of person who finds these connections interesting,
dive in!

17Mine certainly is: I’m writing this book and I still think it looks weird!
18Which is just the classical action plus an undetermined constant; I’m using the very non-standard

notation “A” instead of S for it here only because it is appearing so close to the entropy, for which we are
already using S.
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1.8 Problems

1.8.1 Simple equations of state

An “equation of state” is an equation that relates the different thermodynamic coordinates
of a physical system. Perhaps the single most famous one is the ideal gas equation of state:
PV = NkBT .

Start from the 1st Law for a gas in which there is only one way of doing mechanical
work (i.e., start from dE = TdS − PdV ), and think of both the energy and the entropy as
functions of T and V . Show that, in fact, the ideal gas law implies that E is only a function
of T .

1.8.2 Deriving simple equations of state

An “equation of state” is an equation that relates the different thermodynamic coordinates
of a physical system. Perhaps the single most famous one is the ideal gas equation of state:
PV = NkBT .

(A) Suppose that in a certain gas the internal energy can be expressed as

E = αN

(
N

V

)ψ
f

(
ψS

NkB

)
,

for some constants α and ψ and some function f . For what function f(x) will
this system obey the ideal gas equation of state?

(B) Considering an isentropic (constant entropy) process at fixed number of par-
ticles, for what exponent γ will this system (i.e., with the function f you found
above) satisfy PV γ = (constant)? What is the ratio CP/CV ?

1.8.3 A true pearl...

Your friend hands you a box of...well, you’re not exactly sure what. But the box has a
piston on it, and your friend tells you that the relationship between the pressure and the
energy density u = E/V is u = 3p. Using the first law of thermodynamics, and perhaps a
relevant Maxwell relation, what is the functional form for the energy density as a function
of temperature, u(T )?

1.8.4 A black hole, thermodynamically

Hawking famously calculated how black holes emit radiation, finding that they are perfect
black-bodies with a temperature of

T =
~c3

8πGMkB
,

where G is the gravitational constant. (A) Assuming, a la Einstein, that the energy of a
black hole is E = mc2, what is the specific heat of a black hole? How do you interpret the
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sign of your answer? (B) Assuming the entropy of a black hole with zero mass is zero (seems
reasonable!), what is the entropy of a black hole with finite mass? Please write your answer
in terms of the surface area of the black hole (using the Schwarzschild radius for a black hole
with no charge and no angular momentum, Rs = 2GM/c2), taking the unit of area to be the
Planck length squared (l2p = ~G/c3).

1.8.5 Black holes and Maxwell relations

It turns out there is a long history of people trying to use thermodynamics to understand
the behavior of black holes. One can19 write an equivalent of the first law of thermodynamics
for a charged, rotating black hole as

dE =
TH
4
dA+ ΩdJ + ΦdQ,

where E is the internal energy, TH is a temperature associated with the Hawking radiation the
black hole is emitting, A is the surface area of the event horizon20, Ω is the angular velocity
of the rotating black hole, J is its angular momentum, Φ is the electrostatic potential, and
Q is the black hole’s electric charge. Phew!

I am curious about the equilibrium properties of these thermodynamic black holes. For
instance, suppose I want to know how the “temperature” of a black hole varies with the
angular velocity at fixed A and Q... write down a Maxwell relation to fill in:

∂TH
∂Ω

∣∣∣∣
A,Q

= ?

1.8.6 Maxwell relations a la Jacobi

We discussed Maxwell relations as stemming from the basic mathematical structure of ther-
modynamic potentials. There is an alternative way to see this, using Jacobians. First, let’s set
up some notation. Suppose we have n functions {y1, y2, . . . , yn} of n variables {x1, x2, . . . , xn},
and we define a matrix M whose elements are

Mij =
∂yi
∂xj

. (1.48)

Define the Jacobian as the determinant of M , using the following notation:

∂(y1, y2, . . . , yn)

∂(x1, x2, . . . , xn)
= detM. (1.49)

This is, of course, how we change variables in integrals – for instance, to go from dxdy to
dηdξ in a double integral we would write∫ ∫

f1(x, y)dxdy =

∫ ∫
f2(η, ξ)

∣∣∣∣∂(x, y)

∂(η, ξ)

∣∣∣∣ dηdξ, (1.50)

19perhaps...there’s lots of debate
20Notice that here, interestingly, the surface area of the black hole is playing the role of an entropy-like

quantity (in that it is the conjugate variable to a temperature-like variable). This has led to all sorts of
interesting speculations about holography.
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where f1(x, y) = f2(η, ξ). In this problem we’ll use the Jacobian to compactly express
Maxwell’s relations.

Part A: Basic properties

Briefly establish, from the definition, the following basic properties of Jacobians
[for convenience, feel free to demonstrate the relevant property for n = 2 (and
that’s how I’ll write the examples), but you should also feel free to prove the
correct generalization for n being an arbitrary integer]

(i) Change of order of variables

∂(y1, y2)

∂(x1, x2)
= − ∂(y2, y1)

∂(x1, x2)

(ii) Automatic zeros

∂(y1, y1)

∂(x1, x2)
= 0 =

∂(k, y2)

∂(x1, x2)
, where k is a constant.

(iii) Reduction to single derivatives

∂(y1, y2)

∂(x1, y2)
=

∂y1

∂x1

∣∣∣∣
y2

(iv) Change of variables

∂(y1, y2)

∂(z1, z2)

∂(z1, z2)

∂(x1, x2)
=
∂(y1, y2)

∂(x1, x2)

(To show the general case, one might exploit the general chain rule for partial
derivatives plus the statement that the determinant of a product of matrices is
the product of the determinant...)

Part B: Maxwell relations

The four (most common) Maxwell relations are

∂T

∂V

∣∣∣∣
S

= − ∂P

∂S

∣∣∣∣
V

,
∂T

∂P

∣∣∣∣
S

=
∂V

∂S

∣∣∣∣
P

∂S

∂V

∣∣∣∣
T

=
∂P

∂T

∣∣∣∣
V

,
∂V

∂T

∣∣∣∣
P

= − ∂S

∂P

∣∣∣∣
T
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(i) Summary of Maxwell relations Show that each of the four relations
above can be written as:

∂(T, S)

∂(x, y)
=
∂(P, V )

∂(x, y)

for an appropriate choice of variables x and y. Use the chain rule, and perhaps
a property about inverses, to show that we can summarize all four Maxwell
relations as

∂(T, S)

∂(P, V )
= 1.

Aside: This Jacobian, then, is one way to remember all four relations – the only
thing to do is remember that the Jacobian is positive if T, S, P, V are written in
the order above, and negative if there is a permutation.

1.8.7 Differences in specific heats

The specific heats at constant volume and pressure are defined, respectively, as

CV = T
∂S

∂T

∣∣∣∣
V

, CP = T
∂S

∂T

∣∣∣∣
P

.

The isothermal compressibility and the thermal expansion coefficient at constant P are
defined, respectively, as

κT =
−1

V

∂V

∂P

∣∣∣∣
T

, αP =
1

V

∂V

∂T

∣∣∣∣
P

.

Write an expression for (CP − CV ) in terms of the quantities T , V , α, and κ.

1.8.8 Thermodynamic interrelations

In class I defined thermodynamics as “A phenomenological description of the equilibrium
properties of macroscopic systems.” An alternate definition lurking both in the literature
and in many of our minds might be that it is “a zoo of partial derivatives, transformations,
and relations” [10] We often have to make choices about what energy or free energy to work
with, what variables we want to hold fixed, and while doing all of this we have to keep in
mind that because of the interrelations between thermodynamic free energies, generalized
displacements, and generalized forces there are certain mathematical relationships we have
to keep track of21.

(A) First derivative triangles: Consider a general mathematical interrelationship of

the form Adx+ Bdy + Cdf = 0. Separately calculate ∂f
∂x

∣∣
y
, ∂y
∂f

∣∣∣
x
, and ∂x

∂y

∣∣∣
f
; use this to then

show the so-called “triple product relation,” ∂f
∂x

∣∣
y
∂y
∂f

∣∣∣
x

∂x
∂y

∣∣∣
f

= −1. Next, write a relevant

expression for dS(E, V ) and use a triple-product relation to show that ∂E
∂V

∣∣
S

= −P
(B): Symmetric second derivatives What are usually called Maxwell relations are

simple consequences of the symmetry of second derivatives: ∂2

∂x∂y
= ∂2

∂y∂x
.

Show that ∂V
∂T

∣∣
P

= − ∂S
∂P

∣∣
T

.

21or, more positively, can exploit to calculate things!
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1.8.9 Applied thermodynamic interrelations

Recall that enthalpy of a gas is defined as by the Legendre transform of the internal energy
H = E + PV , with dH = TdS + V dP . In this and the next problem we’re going to think
about a response function which describes how the temperature of a adiabatically isolated
fluid changes when it is forced through a valve. For this problem, define

µ equiv
∂T

∂P

∣∣∣∣
H

(A) First, use the triple-product rule (or any other thermodynamic manipulation) to
show that

µ = −
∂H
∂P

∣∣
T

∂H
∂T

∣∣
P

.

(B) One of those terms (which one?) is just the heat capacity at constant pressure, CP .
Do a few manipulations (probably involving a Maxwell relation) to show that we can write
the Joule-Thomson coefficient as

µ =
1

CP

(
T
∂V

∂T

∣∣∣∣
P

− V
)

1.8.10 Heat capacity of a specific system

Suppose your friend conducts an experiment and finds that, over some range of T , the a
generalized displacement x requires a generalized force

J = ax− bT + cTx+ dx2,

where a, b, c, d are constants. In a separate experiment she finds that the heat capacity of
the system at constant displacement is proportional to temperature:

Cx = T
∂S

∂T

∣∣∣∣
x

= A(x)T,

for some function A(x).
(A) Given that we have an expression for J above, find an appropriate Maxwell relation

and use it to evaluate
∂S

∂x

∣∣∣∣
T

.

(B) Does the function A(x) actually have any dependence on the displacement x?
(C) Define the entropy at T = 0 and x = 0 to be S(T = 0, x = 0) ≡ S0. Assuming that

the “experimental” results described above hold over the entire range of parameters that are
relevant, write down an expression for S(T, x).

(D) Use all of the above results to predict what the heat capacity at constant generalized
force,

CJ = T
∂S

∂T

∣∣∣∣
J

,

should be as a function of T , J , and the constants a, b, c, d.



1.8. PROBLEMS 37

1.8.11 The shape of a phase boundary

Whenever two different phases of a substance meet along an equilibrium phase boundary
the temperatures, pressures, and chemical potentials of those phases have to match (or else
the physical boundary between the phases would be unstable, or there would be a directed
flux of heat and/or particles, meaning the system would be out of equilibrium). Let’s use
this fact to derive a relation for the shape of the phase boundary in the P -T plane.

So, suppose you have two phases of a substance meeting in equilibrium at a phase bound-
ary. Apply the Gibbs-Duhem relation to each phase in the case that there is a small shift in
temperature, ∆T , along the phase boundary. Derive the following equation for the slope of
the coexistence line:

dP

dT
=
s1 − s2

v1 − v2

,

where si = Si/Ni and vi = Vi/Ni. Since it is typically difficult to experimentally measure
something like the entropy per particle, connect the difference in entropies to the heat flow,
Q, needed to induce a phase change, and write your formula in terms of the latent heat of
the phase change.

1.8.12 Stability of the grand potential

Suppose you are considering a system whose volume is fixed but which can exchange both
energy and particle number with a reservoir. By considering the thermodynamic stability of
your system, show that:

(A) CV,N ≥ 0 and (B) ∂N
∂µ

∣∣∣
V,S
≥ 0

1.8.13 Confined ideal gas thermodynamics

A devious experimental physicist has confined a gas of N classical particles of mass m that
don’t interact with each other in a harmonic trap. The potential energy associated with this
trap is

U(r) =
1

2
kr2,

where r is the distance from the center of the trap and k is the strength of confinement.
There is no “volume” of the gas, nor is there a homogeneous pressure. But we can still talk
about a mechanical work done if the experimenter were to vary the strength of confinement
quasi-statically: dW = Adk, where by dimensional analysis A is something with units of
area. Thus, the analog of our first law of thermodynamics is

dE = TdS + Adk.

(A) Argue on physical grounds that A = 1
2
N 〈r2〉, where 〈r2〉 is the average mean squared

displacement of a particle from the center of the trap.
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(B) Suppose this experiment is being carried out in a temperature-controlled setting. If
I tell you that the relevant free energy is22

βF = − ln

 1

N !

(
π

βh

√
2m

k

)3N
 ,

where β = (kBT )−1 and h is Planck’s constant, evaluate A by taking an appropriate partial
derivative. Compare your result to the ideal gas law.

(C) Write an expression for the difference between the heat capacity at constant k and
the heat capacity at constant A.

22We’ll derive this in a few chapters!



Chapter 2

The phenomenology of phase
transitions

ADD complete introduction, full of wonder

In the last chapter we did phases in equilibrium...what about transitions between phases?
We will use the tools of statistical physics to understand these phase transitions and the
emergence of collective phenomena, too.

2.1 Discontinuous transitions

Short version: many phase transitions around us happen quite abruptly (water freezing,
etc), and are characterized by kinks in the free energy and discontinuities in their first (and
higher-order) derivatives. They also feature things like coexistence of phases at some state
points, hysteresis, etc etc...

2.1.1 Abrupt transitions in fluids

Figure 2.1: Phase and coexistence curves of a liquid-gas system (Left) Pressure vs
volume curves at constant temperature for a liquid-gas system. (Right) Controlling T and
V , there is a coexistence region in which it is favorable for the system to separate into a
mixture of phases rather than remain homogeneous.

39
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Suppose we think about the Gibbs potential for a gas:

G(T, P,N); dG = −SdT + V dP + µdN, (2.1)

where, e.g., V = ∂G
∂P

∣∣
T

. What does the property V look like as we vary P and T? We show this
in Fig. 2.1 on the left. Note that for isotherms below some critical temperature, V suddenly
jumps as P is varied. On the right of the figure we see that if we go to a different ensemble
where we are controlling T and V , there is a range of volumes (or densities) at which there
is liquid-gas coexistence.

How could we come up with a theoretical model that reproduces this kind of behavior?
Consider the van der Waals equation of state for a fluid (which we will derive later in this
course):

P =
kBT

V/N − b
− aN

2

V 2
. (2.2)

This equation is like a generalization of the ideal gas law that accounts for both weak at-
tractions between the particles (in that there is a term proportional to ρ2 where ρ is the
density which tends to lower the pressure) and very short-ranged harsh repulsion between
the particles (in that the total volume is available to the system is effectively reduced by bN).
A plot of this equation of state for several temperatures is shown in Fig. 2.2. At high temper-
atures and large volumes these curves look fine, but something is clearly unphysical about
this equation at low temperatures. Namely, it predicts a region in which increasing pressure
actually increases the equilibrium volume of the system. This violates basic considerations
of thermodynamic stability.

Figure 2.2: Compressibility vs reduced pressure for several substances The van der
Waals equation of state for several temperatures. Hatched lines for the coldest curve indicate
an unphysical part of the equation of state.

2.1.2 Maxwell construction

Our phenomenological strategy for patching things up and getting rid of the unphysical
nature will be the “Maxwell construction,” in which we replace part of the equation of state
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along an isotherm with a straight line... This will make the curves look like real life (cf. Fig.
2.1), but where should we put it?

In the Gibbs free energy, coexistence will occur when Gliquid = Ggas, and if we fix both
T and N we know that ∂G

∂P

∣∣
T,N

= V . Let’s integrate both sides of this equation from Pliquid
to Pgas to get

∆G =

∫ Pg

Pl

V (P )dP. (2.3)

We know from the coexistence condition that ∆G = Gliquid −Ggas = 0. On the other hand,
let’s re-write the integral as

∫ Pg

Pl

V (P )dP =

∫ Pmin

Pl

V (P )dP +

∫ Punst

Pmin

V (P )dP +

∫ Pmax

Punst

V (P )dP +

∫ Pg

Pmax

V (P )dP (2.4)

This has a nice geometrical interpretation (see Fig. 2.3), which tells us that the RHS vanishes
when there is “equal area” around parts of the original equation of state: apparently that
is how we decide to draw our new equation of state so that things are thermodynamically
self-consistent.

Figure 2.3: Maxwell’s equal area construction We geometrically find the position of
the discontinuity in pressure by an equal area construction on Eq. 2.4.
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2.2 The law of corresponding states

Let’s again write the van der Waals equation,

P =
kBT

v − b
− a

v2
, (2.5)

where v = V/N is just the volume per particle, and a and b are parameters that depend on
the microscopic details of the systems under study (generically related to the characteristic
size of the interacting particles, and how strong the attractive interactions are).

We have seen that this equation goes from being monotonic to non-monotonic at some
critical value of temperature, and that at Tc there is a point where the critical isotherm is
flat. We know from our discussion of thermodynamic stability that, at this point, not only
the first but also the second derivative of the pressure with respect to volume must vanish.
Where is this critical point? We find it by23 writing

∂P

∂v
= 0 = − kBT

(v − b)2
+

2a

v3
(2.6)

∂2P

∂v2
= 0 =

2kBT

(v − b)3
− 6a

v4
. (2.7)

Dividing the first equation by the second equation gives us vc−b
2

= vc
3
⇒ vc = 3b, and we

can then plug this critical volume per particle into the above expressions to find the critical
point on the critical isotherm:

vc = 3b, kBTc =
8a

27b
, Pc =

a

27b2
. (2.8)

Suppose we wanted to know if the van der Waals equation was actually any good, and
we convinced someone to do an experiment. In it’s basic form, comparing experimental data
to the van der Waals equation would simultaneously test both the quality of the van der
Waals equation and the ability to measure the microscopic parameters that enter the van der
Waals equation, a and b. But, in general, measuring the microscopic Hamiltonian is really
hard! Better would be to try to locate the critical point of the fluid in question, noting that
the van der Waals equation predicts that the ratio

Pcvc
kBTc

=
3

8
= 0.375 (2.9)

is independent of the microscopic details, and should be the same for all fluids! This combi-
nation is often called the “critical compressibility factor”, and experimentally, this estimate

23A more elegant approach – which I will do in class – is to note that the van der Waals equation can
be written as a cubic polynomial in v: pv3 − (pb+ kBT )v2 + av − ab = 0. For T > Tc there is just one real
root of this equation, and for T < Tc there are three real roots; precisely at the critical point all three roots
must be real and identical, so we must be able to write the equation as pc(v − vc)3 = 0. Comparing the
coefficients of this to the more general cubic expression immediately gives us the critical pressure, volume,
and temperature.
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is okay24 Many real substances have a range for this ratio between 0.28 and 0.33 (carbon
tetrachloride is about 0.27, argon is about 0.29, He4 is about 0.31, water is pretty low at 0.23)
but similar substances seem to differ from the 3/8 ratio in similar ways; this is encouraging
when we think about the types of approximations we made in deriving the van der Waals
equation in the first place. For instance, we assumed the attractive potential was isotropic,
so the fact that diatomic gases have a particular ratio while monatomic gases a different one
feels consistent with the way we constructed our theory.

Even better, this suggests that we write down a dimensionless version of the van der
Waals equation, in which we measure everything relative to the value at the critical point.
Defining Pr = P/Pc, vr = v/vc, and Tr = T/Tc, we can write the equation of state as

Pr =
8

3

Tr
vr − 1

3

− 3

v2
r

, (2.10)

a universal equation of state that all fluids obeying the van der Waals equation of state would
be expected to obey. Remarkable! With no other parameters, all fluids are expected to have
the same equation of state, and similarly all thermodynamic properties which are derived
from the equation of state should also be in correspondence. So, if two different systems are
in states that are characterized by the same values of vr and Tr, one would predict their Pr
would match as well: this is the law of corresponding states.
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Figure 2.4: Compressibility vs reduced pressure for several substances Thin lines are
curves generated by the van der Waals equation of state at various reduced temperatures;
reduced temperature for the actual measurements is indicated by color. Data taken from
Ref. [29].

24Different textbooks will compare 3/8 to the experimental numbers I’m about to quote and declare the
agreement “a little high” [8] or “reasonable” [5] or “not good” [3] or “a long way from the van der Waals
value” [2]. Agreement with experiment, and what we think that should mean for a physical theory, is in the
eye of the beholder.
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This is our first look at a type of universality, albeit of a different character than we
will see when we look at universality near a critical point. The law of corresponding states
is expected to hold not only close to the critical point, but in fact everywhere in the phase
diagram. Experimentally the law of corresponding states is often well satisfied, even by fluids
that do not obey the van der Waals equation! Generally, the expectation set forth by the
corresponding states hypothesis is that we should be able to write the equation of state as

P

Pc
= f

(
T

Tc
,
v

vc

)
(2.11)

for some function f which might be related to the van der Waals derivation, but might be
completely different. A demonstration of this correspondence is shown in Fig. 2.4, showing
the ratio PV/T vs reduced pressure for several substances. None of them follow the van
der Waals equation particularly well, but do demonstrate the expectation that, for instance,
this ratio when plotted against reduced pressure at a fixed reduced temperature should be
independent of the fluid being measured.

2.3 Continuous transitions, and the critical point be-

havior of a van der Waals fluid

We want to investigate why we should expect the law of corresponding states to hold, at least
near a critical point. So let’s imagine expanding the equation of state close to the critical
point25. One of the things we’ll see is that as T gets close to Tc the discontinuities in the
phase transition go away, introducing us to the idea of continuous phase transitions. We
start by defining the reduced variables

π = Pr − 1 =
P − Pc
Pc

, ν = vr − 1, τ = Tr − 1,

in terms of which the reduced equation of state becomes

3ν3 + π(1 + ν)2(2 + 3ν) = 8τ(1 + ν)2. (2.12)

We’ll use this simplified form to study the relationship between our reduced variables and
various thermodynamic quantities, and the compare those relationships to experimentally
obtained results.

Critical isotherm: Along the critical isotherm, for which τ = 0, we can easily expand Eq.
2.12 for close to the critical point (i.e., for small π and ν), and we find

π ≈ −3

2
ν3 ⇒ (P − Pc) ∼ (v − vc)3 . (2.13)

25afterwards, we’ll see why this approach has made a subtle but tremendously important mistake!
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Volume differences: We next look at how ν depends on τ as the critical point is ap-
proached from low temperatures. Rewriting Eq. 2.12 as

3ν3 + 8(π − τ)ν2 + (7π − 16τ)ν + 2(π − 4τ) = 0,

we next recognize that near the critical point the coexistence curve is symmetric. This means
that near the critical point, when we consider the polynomial in ν, we should have two roots
that are approximately equal in magnitude (with opposite signs), and a third root which is
very close to zero. Comparing this consideration to the above equation means that

π − 4τ ≈ 0⇒ π ≈ 4τ, (2.14)

and so for the other possible values of ν we need to solve ν2 + 8τν + 4τ = 0. Doing so gives

lim
T→T−c

ν ≈ ±2|τ |1/2 ⇒ lim
T→T−c

(vgas − vliquid) ∼ (Tc − T )1/2 . (2.15)

Critical isochore: Finally, for this comparison, we look at the isothermal compressibility,
which is essentially determined by

κτ ∼ −
∂ν

∂π

∣∣∣∣
τ

≈ 2

7π + 9ν2 − 16τ
.

If we approach the critical point along the critical isochore (ν = 0) from the high-temperature
side, we get (again, using π ≈ 4τ)

lim
T→T+

c

− ∂ν

∂π

∣∣∣∣
τ

≈ 1

6τ
⇒ lim

T→T+
c

κT (vc) ∼ (T − Tc)−1 (2.16)

We did these calculations in the context of the van der Waals equation of state, but
actually all we have really assumed is that our system is (a) mechanically stable and (b)
analytic, in that close to the critical point we could expand the pressure like

P (T, v) = Pc + α(T − Tc)− a(T − Tc)(v − vc) +
b

2
(T − Tc)(v − vc)2 − c

6
(v − vc)3 + · · · ,

where mechanical stability tells us that the coefficient a > 0 above Tc and c > 0 at Tc. What
we arrive at is a prediction of universal singular behavior near the critical point, with various
exponents characterizing the strength of the singularities.

Writing the above results using conventional names for the exponents, we can write

lim
T→T+

c

κT (vc) ∼ (T − Tc)−γ

lim
T→T−c

(vgas − vliquid) ∼ (Tc − T )β (2.17)

(P − Pc) ∼ (v − vc)δ .

In our mean field calculation we had

γ = 1, δ = 3, β = 1/2.
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Experimentally, it is found that there are singularities in all of these quantities near the
critical point, but the exponents are

γ ≈ 1.24, δ ≈ 4.79, β ≈ 0.33

On the one hand, that’s not too bad! The δ exponent doesn’t look great, but β and γ
aren’t so far off. On the other hand, usually in physics we are willing to make “spherical cow”
approximations as we build our theories – i.e. capturing the basic, often qualitative behavior
of some phenomenon of interest – as long as we are convinced that systematically improving
our approximations will lead to systematically closer quantitative agreement with reality.
The (perhaps surprising!) fact is that until the development of the theory of modern critical
phenomena is was not possible even in principle to account for the difference between, say,
γ = 1 in the theory and γ ≈ 1.2 in real life. After all, as emphasized a few paragraphs
above, all we have really done to come up with our theoretical critical exponents was assume
stability and analyticity near the critical point! The physical systems are indeed stable,
so apparently we made some subtly but mightily wrong assumption when we treated the
equation of state as analytic near the critical point.

2.4 Another mean field theory, more critical exponents

2.4.1 Mean-field Ising model

So far we have been focusing our set of examples heavily on fluids (ideal gases, dilute gases,
van der Waals fluids below Tc...). Let’s take what will feel like a detour and briefly talk about
the the Ising model, which is typically introduced as a toy model for magnetic systems.

Figure 2.5: Schematic representation of the Ising model (Left) a representation of the
square lattice Ising model. (Right) On each site “spins” are either up or down, corresponding
to si = ±1. Sites with a bond between them are included in the term which sums over
neighboring sites in the Hamiltonian.
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Schematically depicted in Fig. 2.5, the Ising model consists of a set of N spins, {s},
each of which can take the values si = ±1, arranged on a lattice. These spins interact with
their neighbors, and may also be coupled to an external magnetic field. The Hamiltonian
governing the spins is

H = −J
∑
〈ij〉

sisj −B
∑
i

si, (2.18)

where J determines the strength of the spin-spin interaction, B is the external field, and∑
〈ij〉 indicates a sum over all spins i and j that are neighbors of each other. This model has

many variations – Is J the same for all pairs of spins? What lattice do the spins live on?
When do we count two spins as being neighbors of each other? – but we will focus on the
simplest case of nearest-neighbor spins with constant J on a hyper-cubic lattice. We will be
interested in thinking about the magnetization per spin,

m =
1

N
〈si〉 , (2.19)

as a function of model parameters and temperature. Although seemingly simple, this model
turns out to contain deep insights into the way we construct physical theories and choose
the level at which we want to describe a system of interest. A mean field approximation26

for this model can be quickly written down – we will derive it in less than a page in the
upcoming chapter on classical statistical mechanics – yielding a self-consistent expression for
the relationship between the magnetization per spin and the external field:

m = tanh (βB + βJqm) , (2.20)

where β = (kBT )−1 and q is the number of neighbors each spin has (e.g., if the lattice is a
hypercubic lattice in spatial dimension d, then q = 2d.

2.4.2 Critical point behavior

First, in the absence of an external field, our mean field equation is just

m = tanh (βJqm) .

Taylor expanding, tanhx ≈ x − x3/3 + · · · , so the the slope of m near the origin is βJq.
Illustrated in Fig. 2.6 by plotting the left- and right-hand sides of the above equation simul-
taneously, if βJq < 1, the only solution to the mean field equation is m = 0; if, however,
βJq > 1 there are three solutions: m = 0 or m = ±m0 (and the m = 0 solution turns out
to be unstable, just like the putative middle solution for the volume at a particular pressure
when T < Tc in the van der Waals equation).

Given this zero-field critical temperature, kBTc = Jq, let’s define the reduced inverse
temperature τ = Tc/T , and also apply the hyperbolic trig identity

tanh (a+ b) =
tanh a+ tanh b

1 + tanh a tanh b

26Just a comment: mean field theories are not unique descriptions of a system. There are often many ways
to generate a mean field theory and the results need not be identical. In general, all mean field theories for
the same system will share the same scaling near a critical point, but will typically differ in their calculations
of non-universal features.
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Figure 2.6: Solution to the self-consistent Ising model magnetization at zero field
For βJq < 1 (red solid curve) the only intersection between the tanh and linear functions is
the solution m = 0. For βJq > 1 (blue dashed curve) solutions at ±m0 exist.

to Eq. 2.20 to obtain

tanh (βB) =
m− tanh (mτ)

1−m tanh (mτ)
. (2.21)

Close to the critical point, where we expect both the field and the magnetization to be small,
we can expand this to obtain

βB ≈ m(1− τ) +m3

(
τ − τ 2 +

τ 3

3

)
+O

(
m5
)

(2.22)

From this, we can read off some critical exponents. In the absence of an external field we
can approach Tc from below, and we see

m2 ∼ Tc − T
Tc

+ · · · ⇒ m ∼ ± (Tc − T )1/2 . (2.23)

Conventionally, this critical exponent is called β, and here β = 1/2.
We can also look at how the external field and the magnetization are related along the

crtical isotherm (here, denoted τ = 1). We immediately see

B ∼ m3; (2.24)

this critical exponent is conventionally called δ, and here δ = 3.
We can also easily look at the isothermal magnetic susceptibility, χT = ∂m

∂B

∣∣
T

, and study
how this changes as we vary T . Differentiating our series expansion of the equation of state
with respect to B gives

1

kBT
= χT (1− τ) + 3m2χT

(
τ − τ 2 +

τ 3

3

)
. (2.25)
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For T > Tc the only solution is m = 0, so immediately

χT =
1

kB (T − Tc)
. (2.26)

For T < Tc, we substitute in our result that m ∼ (Tc − T )1/2, and similarly find χT ∼
|T − Tc|−1. This critical exponent is conventionally called −γ, and here γ = 1.

Comparison with exact results

You’ll notice that the critical exponents we’ve just computed do not depend on the dimension,
d, of the lattice. In d = 1 the mean field theory is disastrously wrong, as in 1D it turns out
that there isn’t even a phase transition! In higher dimensions the qualitative features of our
calculation are correct (there is a phase transition; there are power-law divergences of the
quantities we’ve studied; etc.). In d ≥ 4, the mean field calculation turns out to give the
correct critical exponents, so that’s neat!

What about d = 2 and d = 3? Here’s a table27 (in d = 2 there is an exact solution for
the Ising model; in d = 3 they have been determined via a great deal of numerical effort):

Mean field Exact result (d = 2 ) Numerical result (d = 3), and experiments

β 1/2 1/8 ≈ 0.33
δ 3 15 ≈ 4.79
γ 1 7/4 ≈ 1.24

What is going on, here?! The mean field results look the same as the mean field theory
for the van der Waals equation, but perhaps you suspect that’s just because I’ve shuffled
variable names around to make things look good. But by comparing the d = 3 results with
the experimental results for real liquid-gas critical behavior you should be convinced that
we really are talking about the same critical exponents. Apparently, then, mean field models
of ferromagnetism and mean field models of fluids give the same critical point behavior, and
get the answer wrong in the same non-obvious way!

This is evidence for universality at the critical point, where apparently there is a single
theory which describes the essential physics at the critical point for magnets, for the liquid-
gas transition, for the 3D Ising model, and many other seemingly unrelated systems. We’re
living the dream! In physics we’re always trying to strip away as much of the unnecessary
detail from a system as we can, and apparently near a critical point “Nature” does all the
hard work for us!

As an aside, the pattern we saw above as we varied the dimension of our model under
study is pretty generic: when you write down a mean field theory there is a dimension at
or below which which the theory fails completely (called the lower critical dimension, dl),
a dimension at or above which the theory gives the right answers (called the upper critical
dimension, dc). For dl < d < dc mean field theory often returns crudely correct phase
diagrams that are wrong or, worse, misleading near critical points. Sadly for mean field
theory, life tends to happen in between dl and dc.

27There are other critical exponents, which we’ll meet in the next chapter, that fit the pattern. There’s α
(for the divergence of the heat capacity), there’s ν (for how the correlation length depends on temperature
close to the critical point), and there’s η (which describes the long-range behavior of the two-point correlation
function precisely at the critical point).
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2.5 Problems

2.5.1 The Dieterici equations of state

The Dieterici equation is a modified version of the van der Waals equation which accounts
for the fact that interactions can create gradients in pressure at the boundary of a gas. The
equation of state is

βP (v − b) = exp
(
−βa

v

)
,

where as in the notes v = V/N .

(A) Find the location of the critical point, {Pc, Tc, vc}, and compute the ratio
Pcvc
kBTc

(B) Find the critical exponent that characterizes the pressure in terms of v− vc
on the critical isotherm.

(C) Find the critical exponent that characterizes the isothermal compressibility,
κT as a function of T − Tc on the critical isochore.

2.5.2 Critical point behavior of a gas

In class we showed three power-law relationships between quantities close to the critical
point predicted by the van der Waals equation of state, and above we did the same for the
Dieterici equation of state. The similarity of the answers should make you suspicious. In fact,
our results really only depended on the pressure being an analytic function in the volume
and temperature. Let’s see this in action. Let ρ = V/N , and suppose that we can write the
pressure of the fluid as

P (ρ, T ) = kBTρ− bρ2 + cρ3

where b and c are positive constants.

(A) Critical point: Thermodynamic stability demands that at the critical point
∂P
∂ρ

= ∂2P
∂ρ2

= 0. Find the critical temperature, Tc, below which this formula cannot
be the valid equation of state, as well as the corresponding values of Pc and ρc.
Calculate the dimensionless ratio

Pc
kBTcρc

(B) Scaling near the critical point. (i) At T = Tc, how does (P −Pc) depend
on (ρ− ρc)? (ii) What is the isothermal compressibility,

κT = − 1

V

∂V

∂P

∣∣∣∣
T

,

as a function of T on the critical isochore (i.e., for ρ− ρc).
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(C) More terms in the expansion. Suppose in our expression above we had
included another power of density:

P (ρ, T ) = kBTρ− bρ2 + cρ3 + dρ4.

Is the dimensionless ratio characterizing the location of the critical point, Pc
kBTcρc

,
still independent of the constants b, c, and d? If no, what kinds of interesting
asymptotic limits does the ratio have when b, c, and d are large or small relative
to each other?

2.5.3 Non-analytic equations of state

We’ve looked at the critical exponents associated with various analytic, mean-field equations
of state. Suppose instead you managed to derive an equation of state for a system near the
critical point that looked like

h ≈ am(t+ bm2)κ,

where h is the external field, m is the order parameter, a, b are positive constants, and
1 < κ < 2. What are the critical exponents β and δ of this model? What about the exponent
γ, evaluated for both t > 0 and t < 0? Do the critical exponents that you found satisfy the
Widom relation we expect (i.e., is γ = β(δ − 1))?
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Chapter 3

Landau theory, universality, and
scaling near a critical point

We just saw some universal behavior. Figure / example / more examples go here!

3.1 Landau’s phenomenological theory

If seemingly very different mean field theories – for very different physical systems! – give
rise to the same essential behavior near their respective critical points, your instinct is that
there ought to be a unified way of looking at phase transitions that reveals why this should
be the case. Landau’s phenomenological theory28 of phase transitions serves exactly this
role, focusing on understanding the universal behavior of physical systems based on two
general considerations: analyticity and symmetry. The Landau approach to phase transitions
is typically only qualitatively correct (as we are about to see, it gives exactly the same
critical exponents as mean field theory), but it (a) let’s us understand universality and (b)
is extremely straightforward, letting you compute mean field critical exponents for systems
in different universality classes with typically great rapidity.

Landau theory postulates the existence of an object, L, called the Landau free energy
density (it is not a thermodynamic free energy density, and it need not be convex). The
theory starts by identifying an order parameter of the system, η, which is a quantity that is
typically zero in a high-temperature or disordered phase, and non-zero in an ordered phase:
For the liquid-gas transition one can take the difference in densities between the phases
(η = vgas − vliquid), for the Ising model magnet we can take the magnetization (η = m),
for a superconductor it is related to off-diagonal long-range order in the one-particle density
matrix, etc. Order parameters for a particular system need not be unique, and depending on
the nature of the problem they can be scalars, vectors, etc., although here we will assume it
is a scalar.

Once we have identified an order parameter, we want to construct an L that will act like
a free energy density (and has dimensions of energy per volume), insofar as we will compute

28To be distinguished from a version of Landau theory which is motivated by systematic calculation
starting with a microscopic Hamiltonian. This more complicated version is typically not more insightful.
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thermodynamic quantities by taking appropriate derivatives of L. We construct L via the
following constraints:

1. The state of the system is specified by the global minimum of L with respect to η.

2. L must be consistent with the symmetries of the system.

3. Near the critical point, L is an analytic function of η and any coupling constants, which
I’ll denote as {K} here. Thus, for instance, for a spatially uniform system we can write

L =
∑
n=0

an({K})ηn (3.1)

4. In the disordered phase the order parameter should be η = 0, while it should be small
and non-zero in the ordered phase.

The Landau free energy density for a magnetic system

Let’s see how these constraints let us build L for a particular example: we’ll choose the kind
of Ising model we just discussed in the last section. By the third and the fourth constraint,
near Tc we can expand L as a Taylor series, and since we expect η to be small, we don’t need
to go to very high order. We’ll write

L =
4∑

n=0

anη
n, (3.2)

where the coefficients an could depend on the Ising model coupling term J , the external field
B, the temperature T , or whatever else happens to be in our model.

Additionally, from the first constraint we have that L is extremized by solving

∂L
∂η

= a1 + 2a2η + 3a3η
2 + 4a4η

3 = 0. (3.3)

Since we want η = 0 to be the solution for T > Tc, we have a1 = 0.
Finally, what about the symmetry constraint? Consider our Ising model in the absence

of any external field, B = 0: certainly the Hamiltonian here is invariant under the flipping of
every spin29, and we expect that the probability of finding the system with a particular value
of the magnetization has the property P (η) = P (−η). We expect, since we want L to behave
like a free energy, that P ∼ exp (−βL), so we require for this model that L(η) = L(−η). The
fact that L is even implies that in our Taylor series ai = 0 for every odd value of i. Thus, we
have

L = a0 + a2η
2 + a4η

4 +O(η6), (3.4)

with the additional constraint that a4 > 0 (if it is not, then L above would be minimized by
η →∞, and we want η to be finite and small... if a4 is negative for a particular system, one
needs to include higher order terms to stabilize the system.

29Including the field, the Ising model has Z2 symmetry associated with H(B, J, {si}) = H(−B, J,−{si})
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What remains is to ask, for the Ising ferromagnet, about the temperature dependence of
the coefficients ai. First30, a0 is the value of L in the high temperature phase, and in general
we expect this coefficient to vary smoothly (i.e., without divergence) through the critical
temperature. It represents, in a sense, degrees of freedom which are not described by (and
are certainly not coupled to) the order parameter; it may be important for some detailed
calculations, but we will typically set it to zero.

Next, we expand the fourth-order coefficient as

a4 = a
(0)
4 +

T − Tc
Tc

a
(1)
4 + · · · , (3.5)

where the notation indicates the part of the coefficient associated with a particular order of
this series expansion. As it turns out, the temperature dependence in a4 does not control
the overall behavior of the system near Tc, so we will just assume that a4 is some positive
constant.

That leaves only a2, which we similarly expand:

a2 = a
(0)
2 +

T − Tc
Tc

a
(1)
2 + · · · .

Once again, though, we want to find η = 0 for T > Tc and η 6= 0 for T < Tc. Comparing
with Eq. 3.3, whose solution (for a1 = a3 = 0) is

η = 0 or η = ±
√
−a2

2a4

, (3.6)

we see that we want to set a
(0)
2 = 0 and a

(1)
2 to some positive constant to ensure that the

order parameter is non-zero below Tc. Thus

a2 =
T − Tc
Tc

a
(1)
2 + · · · , (3.7)

and as with a4, it is this lowest order term which dominates behavior near the critical point.
Finally, we now reintroduce the possibility of an external field. This breaks the even

symmetry of the system, and we know from the Ising model Hamiltonian that it adds an
a1 = −B term. Dropping some of the cumbersome notation and introducing a and b as
phenomenological constants, we have our final expression for the Landau free energy density
for the Ising model universality class in the absence of spatial variations:

L = −Bη + atη2 +
b

2
η4, where t =

T − Tc
Tc

(3.8)

In principle we are allowed by symmetry to now also add an a3 term; a calculation reveals that
it is not a leading term near the critical point, so we’ve neglected it for now. In general, L is
constructed by writing down all possible scalar terms which are powers of the order parameter
(or the order parameter components, if the order parameter itself is more complicated than
a scalar that are consistent with the symmetry of the system.

30Zeroth?
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Critical exponents

For the above L, we now compute a few critical exponents. The β exponent is the one that
characterizes the divergence of m with t below Tc. From the above, we already know that

η =

√
−at
2b

, (3.9)

so we read off β = 1/2.
We next differentiate L with respect to η to find the magnetic equation of state:

B = 2atη + 2bη3. (3.10)

On the critical isotherm (t = 0) we immediately see B ∼ η3, and this is our δ = 3 exponent.
The isothermal magnetic susceptibility is

χT =
∂η(B)

∂B

∣∣∣∣
T

=
1

2 (at+ 3bη(B)2)
, (3.11)

where η(B) is the value of the order parameter in the presence of the external field, i.e., the
solution to Eq. 3.10. The exponent γ characterizes the divergence of the susceptibility at
zero field. For t > 0 we know η = 0 so χT = (2at)−1. For t < 0 we know η = (−at/b)1/2 so
χT = (−4at)−1. In either case, γ = 1.

Ignoring fluctuations... not variations

We very briefly note that Landau theory neglects the (important!) effects of fluctuations, but
it does not only apply to homogeneous systems. It is straightforward to generalize the ideas
above to the case where the order parameter can be a spatially varying one: η = η(r), and
if this were a class on statistical field theory we would spend a lot of time thinking about
these cases (this would also let us write down critical exponents related to the divergence of
correlation lengths in the system). When we do treat spatially inhomogeneous systems, we
need to add the constraint that

5. L should be a local function, depending only on a finite number of spatial gradients of
the order parameter.

As with the earlier construction, the gradient terms we write down must be consistent with
the symmetry of the system; for the Ising model where we keep only even terms, the lowest
order term is the square of the gradient, which would give the Landau free energy of

L =

∫
dr
[
L (η(r)) + ζ (∇η(r))2] , (3.12)

where ζ is some new positive constant and L is the homogenous L of the preceding notes. In
general for this symmetry there are also terms like (∇η)4 and (∇2η)2), etc., and here we’ve
just written the lowest order gradient term31.

31I hear you asking, “Why isn’t there a term like η∇2η, which is of the same order as the term we did
use, is perfectly isotropic, and has the right m→ −m symmetry?” The above form is customary because we
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3.2 Correlations and fluctuations

Having introduced the idea that the order parameter might have spatial variations, we now
introduce a dimensionless two-point correlation function:

G(r − r′) =
1

η̄2

[
〈η(r)η(r′)〉 − η̄2

]
=

1

η̄2
〈(η(r)− η̄) (η(r′)− η̄)〉 . (3.13)

This quantity measures correlations between the fluctuations of the order parameter at dif-
ferent distances32, and it is deeply linked to some of the thermodynamic properties of the
system.

For instance, suppose as the order parameter we chose the spatially varying density field,
ρ(r). The total number of particles is N =

∫
ddrρ(r), and the integral over G is∫

ddrddr′G(r − r′) =
1

ρ2

∫
ddrddr′

[
〈ρ(r)ρ(r′)〉 − ρ2

]
=

1

ρ2

[〈
N2
〉
− 〈N〉2

]
. (3.14)

Translational symmetry gives us one of the integrals over G for free, and we recognize a
connection between the number fluctuations and the isothermal compressibility of the system.
Combing everything, then, gives us∫

ddrG(r) = kBTκT . (3.15)

This is an example of a fluctuation-susceptibility relation, and is the equilibrium limit of the
more general fluctuation-dissipation relation.

3.2.1 Correlation function for a specific model

To be definite, let’s calculate the two-point correlation function for a system described by
the Ising universality class Landau theory. The spatially varying order parameter will be
η(r), the external field will be B(r), and we’ll write the Landau free energy as

L =

∫
ddr

[
(at)η2 +

1

2
bη4 −Bη +

c

2
(∇η)2

]
, (3.16)

where a, b, c are phenomenological parameters and t is the reduced distance to the critical
point. If the system was uniform we would relate the typical value of the order parameter to
the appropriate derivative of the free energy: 〈η〉 = − ∂L

∂B
. In the presence of spatial variations,

these partial derivatives get replaced by functional derivatives.

know the identity
∇ · (η∇η) = η∇2η + (∇η)2,

which implies ∫
dr η∇2η = −

∫
dr (∇η)2 +

∫
dS · η∇η.

In the thermodynamic limit we neglect the surface term, so in general we pick either (∇η(r))
2

or η∇2η, but
not both.

32We have assumed translational symmetry in writing G(r − r′); more generally we would have G(r, r′)
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Functional differentiation

Suppose F [η(r)] is a functional33 of η(r). The functional derivative of F with respect to the
function η is defined as

δF

δη(r′)
= lim

ε→0

F [η(r) + εδ(r − r′)]− F [η(r)]

ε
. (3.17)

This generalizes the definition of the usual derivative, and the operation satisfies properties
like

δ

δη(r)

∫
ddr′η(r′) = 1

δ

δη(r)
η(r′) = δ(r − r′) (3.18)

δ

δη(r)

∫
ddr′

1

2
(∇η(r′))

2
= −∇2η(r).

That last expression, which you probably can see that we’re about to use, involves an inte-
gration by parts that neglects the surface term.

Linear response

With those definitions, we compute the expectation value of the order parameter via func-
tional differentiation:

〈η(r)〉 = − δL

δB(r)
. (3.19)

This implies that a small change in the external field would cause a small change in the
Landau energy

δL = −
∫

ddr′ 〈η(r′)〉 δB(r′). (3.20)

Since the susceptibility is a measure of how the order parameter changes when the field
changes, we have

χT (r, r′) = − δ

δB(r′)

(
δL

δB(r)

)
. (3.21)

Treating L as if it is related to a partition function, L = −kBT logZ (for the purposes of
remembering which thermodynamic derivatives we want to take), we re-write this as

χT (r, r′) = kBT

[
1

Z

δ2Z

δB(r)δB(r′)
− 1

Z

δZ

δB(r)

1

Z

δZ

δB(r′)

]
= β [〈η(r)η(r′)〉 − 〈η(r)〉 〈η(r′)〉]
= βG(r − r′), (3.22)

33Just as a function is a map – accepting, say, a set of numbers and returning an output number – a
functional is a map that accepts a function of a set of numbers and returns an output number
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again connecting response functions with correlation functions. Note that, using tildes to
denote Fourier transforms, one connects isothermal susceptibility with the wave-vector de-
pendent susceptibility χ̃(k) = βG̃(k) as

χT ≡ lim
k→0

χ̃(k) = β G̃(k)
∣∣∣
k=0

= β

∫
ddrG(r), (3.23)

as in Eq. 3.15.

The correlation function

Enough dithering, let’s calculate the two-point correlation function from Eq. 3.16. To do
this, we extremize the Landau free energy to find the spatially varying field that the system
will adopt in equilibrium. I.e., we set δL

δη(r)
= 0. This tells us that η(r) must satisfy

2atη(r) + 2bη3(r)−B(r)− c∇2η(r) = 0. (3.24)

We then (functionally) differentiate this expression with respect to the spatially varying field:

δ

δB(r′)

[
2atη(r) + 2bη3(r)−B(r)− c∇2η(r)

]
= 0

⇒ β
[
−c∇2 + 2at+ 6bη2(r)

]
G(r − r′) = δ(r − r′). (3.25)

Well, would you look at that! The correlation function is a Green’s function; seems like a
retroactively good reason to have used G for it...

We can simplify the above expression by noting that for translationally invariant systems
the order parameter η we want is just the equilibrium value from the homogenous Landau
theory calculation we did earlier: η = 0 for t > 0 and η = ±

√
−at/b for t < 0. We now

introduce the correlation length, ξ, noting that G(r − r′) satisfies(
−∇2 + ξ−2(t)

)
G(r − r′) =

kBT

c
δ(r − r′), (3.26)

where

ξ(t) =

{ √
c

2at
for t > 0√

− c
4at

for t < 0

}
∼ |t|−1/2. (3.27)

Great, given that G(r−r′) satisfies such an equation, what does it look like? The Fourier
transform of Eq. 3.26 gives

G̃(k) =
kBT

c

1

k2 + ξ−2
. (3.28)

Evaluated at k = 0, this gives us the isothermal susceptibility (a measurable quantity for
the system) in terms of the microscopic parameter c and the correlation length:

χT = βG̃(0) =
ξ2

c
,

with which we can write the two-point correlation function as

G̃(k) =
kBTχT (t)

1 + k2ξ2
. (3.29)
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In real space one can take the inverse Fourier transform (i.e. “look it up in a table”), or one
can solve the real-space differential equation in polar coordinates. I’ll spare you the details
for now. Using the correlation length as our unit of length and defining ρ = r/ξ, the result
is:

c

kBTξd−2
G(ρ) =

{
e−r/ξ for d = 1

K d−2
2

(r/ξ)

(2π)d/2(r/ξ)(d−2)/2 for d ≥ 2
, (3.30)

where the Kn are modified spherical Bessel functions of the third kind. We really are most
interested in the short- and long-range behavior of these functions, which are

Kn(x) ∼
(
π
2x

)1/2
e−x, for x→∞

Kn(x) ∼ Γ(n)
2

(
x
2

)−n
, for x→ 0 (3.31)

K0(x) ∼ − log x , for x→ 0.

Combining everything, very close to Tc the correlation length has diverged, so we just
need the r � ξ limit of the Kn. For d = 2 we use the special log form appropriate to K0,
and for d > 2 all of the powers of ξ conveniently cancel out, giving us

G(r) ∼
{

log (ξ/r) for d = 2
r2−d for d > 2

. (3.32)

Far from the critical point, though, ξ is small; taking the r � ξ limit of the Kn gives (for
d ≥ 2)

G(r) ∼ kBT

c

exp (−r/ξ)
r(d−1)/2

1

ξ(d−3)/2
, (3.33)

where I’ve dropped prefactors related to 2’s and π’s for simplicity.

Comments on the correlation length

From the preceding analysis, and from the definition of G(r), we see that ξ is a measure
of the spatial extent over which correlations extend. In mean field models of the Ising type
we predicted ξ ∼ |t|−1/2; far from the critical temperature the correlation length will be
on the same scale as something microscopic (distance between spins, or the range of the
attractive part of the Lennard-Jones interaction, or...), and any fluctuations in the local
order parameter away from the average value will quickly wash out.

As T → Tc, though, ξ → ∞, and correlations can extend over the entire system. Even
though the actual interactions in the system are short-ranged, long-range order can prop-
agate. Since the correlations are essentially macroscopic, the microscopic differences that
distinguish one system from another likely are irrelevant at such macroscopic scales; this is
an important clue for building a general understanding of critical phenomena.

3.3 Critical exponents

We pause to briefly summarize (and comment on) the most important critical exponents
that characterize various systems. In all of these cases we are investigating the idea that,
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close to the critical point, some thermodynamic quantity has the limiting form of a power
law. Letting t = (T − Tc)/Tc and looking a quantity f , when we write

f(t) ∼ tλ

what we mean is

λ = lim
t→0

log f(t)

log t
. (3.34)

This is a particularly relevant point when remembering (a) there may be other, non-dominant
power law behavior near the exponent; we are capturing just the leading order term, and (b)
sometimes we quote an exponent as having the value zero. This can either mean that the
thermodynamic quantity has a discontinuity or that it has a logarithmic divergence rather
than a power-law one. This last possibility comes from comes from using the identity

log t = lim
λ→0

[
1− e−λ log t

λ

]
= lim

λ→0

[
1− t−λ

λ

]
. (3.35)

Suppose we are considering a system with Landau free energy L, order parameter m, and
ordering field B.

δ : All critical exponents except for this one are evaluated at B = 0. In the presence of the
field, though, δ characterizes the relationship between the field and the order parameter:

m ∼ B1/δ. (3.36)

α : The divergence of the heat capacity is measured via α. In principle, the divergence
could be different on the two sides of the transition, which is commonly denoted by writing
α for the divergence above Tc and α′ for the divergence below Tc.

C = −T ∂
2L
∂T 2

∼ |t|−α. (3.37)

In the Ising model universality class, mean field predicts α = 0 (in the form of a disconti-
nuity); the 2d Ising model has α = 0 (in the log divergence form), and the 3d model has
α ≈ 0.11.

β : Below the critical temperature, where the order parameter is non-zero, it diverges like

m ∼ |t|β. (3.38)

γ : The divergence of the low-field susceptibility is measured by γ; it, too, can in principle
have different values above and below the transition:

χ =
∂m

∂B

∣∣∣∣
B=0

∼ |t|−γ. (3.39)
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ν : The last two critical exponents on this list are related to the behavior of the two point
correlation function. We did a mean-field calculation that suggested the correlation length
diverged near t = 0 like ξ ∼ |t|−1/2. There’s no reason to expect for real systems that the
mean field prediction here is correct, so we introduce ν:

ξ ∼ |t|−ν . (3.40)

In the Ising model universality class, mean field predicts ν = 1/2, the 2d model has ν = 1
and the 3d model has ν = 0.63.

η : Finally, we want to characterize how the two-point correlation function behaves precisely
at the critical point (t = 0). Our mean field theory (using the r � ξ limit of the Kn)
predicted that G(r) ∼ r−(d−2), and again, we expect real experiments could differ from this.
We introduce the exponent η to measure how wrong mean field is at t = 0:

G(r) ∼ r−(d−2+η). (3.41)

In the Ising model universality class, mean field predicts η = 0, the 2d model has η = 1/4
and the 3d model has η = 0.032. Experimentally these small exponents are hard to measure

3.3.1 Dimensional analysis and mean field theory

Tighten the argument here... Goldenfeld’s treatment To emphasize just how surprising it
should be that mean field theory gets the critical exponents wrong, and the surprising sense in
which a diverging correlation length does not mean that the system has completely forgotten
about microscopic length scales, let’s write a dimensionless version of the Landau free energy
of the Ising type in the absence of an external field:

βL =

∫
ddr

1

2
(∇φ)2 +

r0

2
φ2 +

1

4
u0φ

4. (3.42)

In terms of our earlier expressions, this is just writing

φ = η
√
βc, r0 =

2at

c
, u0 =

2b

βc2
. (3.43)

Let’s think about the correlation function in terms of basic dimensional analysis. Using the
bracket notation to denote the dimension of various quantities, we have [βL] = 1 (i.e., is
dimensionless), so each separate term in the integrand must be dimensionless, too. Thus:[∫

ddr(∇φ)2

]
= 1⇒ (xd)(x−2) [φ]2 = 1, (3.44)

where x denotes units of length. From this, we immediately get

[φ] = x1−d/2, [r0] = x−2, [u0] = xd−4. (3.45)
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So, what does dimensional analysis say about the correlation length? Clearly [ξ] = x,
but from the above equation the only independent quantity with units of length is r0, with
dimensions [r0] = x−2. So, apparently, we’re done: by dimensional analysis we get that

ξ ∼ r
−1/2
0 ∼ |t|−1/2,

where in the last line we remember that r0 ∝ t. In some sense, then, the deep mystery is
how could this have been wrong?

The answer is that we ignored one other source of an independent length scale in our
dimensional analysis! In particular, there is a microscopically small length scale embedded
in the problem – say, the spacing between lattice sites in our Ising model – an apparently if
mean field is wrong we need to include this length scale.

How does this solve our problem? Let’s call this microscopic length λ, with [λ] = x, of
course. By dimensional analysis we can conclude that

ξ = r
−1/2
0 f(r0λ

2), (3.46)

where f is some function we know nothing about (yet). We’ve written it this way, though,
because r0 ∝ t and λ is independent of t, so near the critical point we are interested in
limz→0 f(z). If, for whatever reason, it so happens that

f(z) ∼ zθ (3.47)

as z → 0, then as the critical temperature is approached we get

ξ ∼ t−1/2+θλ2θ. (3.48)

The exponent θ, characterizing the difference between an observed divergence of the corre-
lation length and the prediction from Landau theory, is called the anomalous dimension.

Notice something remarkable that’s happened here: we have been emphasizing that near
a critical point the diverging correlation length sweeps away any microscopic details, and we
are used to assuming that when trying to explain phenomena at one scale we can disregard
phenomena at much shorter scales34. Apparently near the critical point this idea is not quite
right: the very existence of a microscopic length scale allows for an anomalous dimension /
departure from mean field theory. In general, although not a priori guaranteed, the value
of the anomalous dimension does not depend on the microscopic length scale itself. Thus,
near a critical point we expect that the scaling of various quantities, the way they diverge
near the critical point, to be universal, but there is no reason to expect the prefactors of the
scaling relations to share that universal character.

3.4 Scaling hypothesis

We just described a set of critical exponents that characterize the behavior of systems near
their critical point; let’s stare at a table35 for a moment:

34“Don’t model bulldozers with quarks” [30]
35Anything that is not an integer should be assumed to be approximate. Sources are wikipedia (where

there are tables of critical exponents for many more models) [31], plus [32] for the Potts model
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Ising Ising Ising Percolation 4-State Potts Directed percolation XY model
(MF) (d = 2) (d = 3) (d = 3) (d = 2) (MF) (d = 3)

α 0 0 0.11 -0.625 2/3 −1 −0.015
β 1/2 1/8 0.327 0.418 1/12 1 0.349
δ 3 15 4.79 5.3 15 2 4.78
γ 1 7/4 1.24 1.793 7/6 1 1.32
ν 1/2 1 0.63 0.88 2/3 1/2 0.67
η 0 1/4 0.036 0.046 1/4 0 0.038

In the early 60s, as mean field results were known and as some finite-dimensional estimates
were obtained by numerical analysis, people started noticing that these exponents did not
seem to be independent. For instance, the exponent values seem to satisfy

α + 2β + γ = 2 (3.49)

γ − β(δ − 1) = 0 (3.50)

γ − ν(2− η) = 0, (3.51)

which are often called the Rushbrooke, Widom, and Fisher identities, respectively. Since
then, there have been various proofs that thermodynamics requires (via, say, the convexity
of the free energy, or the relative sizes of CP and CV certain inequalities to be satisfied, for
instance

α + 2β + γ ≥ 2,

but that in the actual data these thermodynamic inequalities are saturated.

3.4.1 The static scaling hypothesis

Thermo was presented as “what is a consistent mathematical framework that matches phe-
nomenology?” So: what framework near the CP could give both non-MF exponents and
exponent relationships? The static scaling hypothesis36 is an attempt to encode multiple
features of the behavior of a system near the critical point in a single expression; as we
will see, assuming this hypothesis allows one to strengthen the thermodynamic inequalities
mentioned above for the relationships between exponents into equalities – which is good,
because the equalities are satisfied. Let’s focus on a magnetic system, where just to keep you
on your toes I’ll write m for the magnetization and h for the external field (in units of kBT );
t will still stand for the reduced distance to the critical point.

Static scaling of the magnetization

We want to simultaneously encode two things we have already seen:

m(t = 0, h) = ±C1|h|1/δ and m(t, h = 0) =

{
0 t > 0

±C2|t|β t < 0
. (3.52)

36Widom, in the modestly titled “Some topics in the theory of fluids” [33]
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One of Widom’s many insights was that, staying in a regime where |t| � 1 and |h| � 1,
both of these results can be expressed as

m(t, h) =

{
tβF+(h/t∆) t > 0

±(−t)βF−(h/(−t)∆) t < 0
, (3.53)

where we assume that β and the gap exponent ∆ are universal, as are the scaling functions
above and below the critical temperature, F+ and F−. At first glance we don’t know very
much about these scaling functions, but the requirement that Eq. 3.53 reproduce the results
in Eq. 3.52 will let us both put some constraints on F+ and F− and also derive relationships
between the critical exponents.

First, we’ll show that the gap exponent is actually not a new critical exponent at all!
Consider the susceptibility in the low-field limit, χT ∝ ∂m

∂h

∣∣
h=0

. Differentiating Eq. 3.53 with
respect to h gives

χT ∝ |t|β
∂F±(h/|t|∆)

∂h

∣∣∣∣
h=0

∝ |t|
β

|t|∆
∂F±(x)

∂x

∣∣∣∣
x=0

∼ |t|β−∆F ′±(0). (3.54)

So, as long as the derivative of these scaling functions doesn’t either diverge or vanish as the
argument goes to zero, we can connect the gap exponent to a critical exponent we’ve already
encountered:

β −∆ = −γ. (3.55)

Next, let’s see what happens by requiring that Eq. 3.53 reproduces the results in Eq.
3.52. First, we take the small field limit of Eq. 3.53 and match it to the zero field result

m(t, h) =

{
tβF+(0) t > 0

(−t)βF−(0) t < 0
=

{
0 t > 0

±C2(−t)β t < 0
(3.56)

This already gives us some constraints on the scaling functions, namely

F+(0) = 0 and F−(0) = (some finite constant). (3.57)

We also want to reproduce the result for the magnetization along the isotherm in the
presence of a field (m ∼ h1/δ), so we look at the limit t→ 0 while keeping h small and finite.
This amounts to looking at the scaling functions in the limit that their argument diverges,
but we also know that in this limit m is well-behaved. How do we reconcile the situation?
We assume that both scaling functions adopt a power-law form for large argument:

F±(x) ∼ xλ. (3.58)

Making this assumption, the magnetization as the critical isotherm is approached is

m(t→ 0, h) ∼ |t|β
(

h

|t|∆

)λ
∼ |t|β−λ∆hλ. (3.59)

On the critical isotherm, though, we need the t-dependence of this expression to cancel out
(otherwise we would get the incorrect result that either m = 0 or m =∞, depending on the
sign of the exponent of |t|). We therefore have the simultaneous requirements

β = λ∆ and λ = 1/δ. (3.60)
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Figure 3.1: Scaling plot for magnetization vs field near the critical point for the
“anhydrous compound with the formula

{[
MnII

2 (pydz)
] [

NbIV (CN)8

]}
n
,” taken at different

temperatures, with estimates of Tc ≈ 95.3, β ≈ 0.41, and γ ≈ 1.39. Data roughly extracted
from Ref. [34]. Units on the plot have been suppressed.

This both tells us that the scaling functions behave like

F±(x→∞) ∼ x1/δ (3.61)

and
∆ = β/λ = βδ. (3.62)

Combining the above result with Eq. 3.55 gives the Widom identity:

βδ = β + γ. (3.63)

The static scaling hypothesis, if true, suggests two powerful things. First, by derivations
like the above, it places constraints on the critical exponent that should be measured in
experiments or in exact theories (and, thus, also provides targets for approximate theories,
if you’re into that kind of thing). Second, the assumption that the scaling functions are also
universal suggests an important way of plotting data!

For instance: suppose you were to measure the magnetization of a system as a function
of temperature and external field and then make a plot of m vs h, you’d get different curves
for each value of the field t. The static scaling hypothesis says that even if you have no
idea what the functions F± are, if you plot m/|t|β vs |h|/|t|β+γ then you should observe
data collapse, with all of your data falling onto two branches. To observe this collapse you
would need to know the right values for Tc, β, and γ (which you usually don’t know ahead
of time). An example of this kind of data collapse is shown in Fig. 3.1, where I pulled data
from an arXiv paper studying magnetization near the critical point of... let’s just say “some
material.” Manipulating data in order to observe scaling collapse is a way of estimating both
the location of the critical point and the values of the critical exponents, although it must
be done with care.

Static scaling for the free energy

Above we wrote down a scaling hypothesis for the magnetization; we can do the same thing
for the free energy (or, at least, the part of the free energy which is singular at the critical
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point), fs. This would look like

f(t, h) = |t|2−αF±s
(

h

|t|∆

)
. (3.64)

Defining the magnetization by differentiating this with respect to the field in the limit that
h is small gives a relationship between the exponents β, α, and ∆. Defining the isothermal
susceptibility by differentiating again gives a relationship between the exponents α, ∆, and
γ. Combining these two lets one derive the Rushbrooke scaling law.

Hyperscaling

Before closing, we briefly mention that in addition to scaling laws relating the critical ex-
ponents, there are also hyperscaling laws which involve both the critical exponents and the
dimension of space. These can be derived from, e.g., assuming that the correlation function
has a scaling form:

G(r, t, h) =
1

rd−2+η
F±G (r|t|ν , h

|t|∆
),

where we’ve added the subscript to FG since there is no reason that the scaling function for
the two-point correlations should be the same as the scaling function for the magnetization.
This scaling hypothesis leads to laws like the Josephson relation,

2− α = dν.

Hyperscaling laws are on a different footing than the scaling laws – they must be, and clearly
something must be afoot in mean field models, where the critical exponents stay the same for
all d > dc. We also mention that just as there are static scaling hypotheses there are dynamic
scaling hypotheses. These relate the relaxation time – the way that fluctuations from the
typical order parameter decay away – to the correlation length, and bring with them both
new critical exponents and new relationships between those exponents.

Finally, you may be wondering where these scaling laws in fact derive from. The main
physical idea is the diverging correlation length, ξ, is responsible for all of the singular
behavior near the critical point. We’ve already indicated that this vague statement cannot
be completely true, but the idea is the following: consider just the part of the free energy
density which has the singularity, and by dimensional analysis write it as

Ls
kBT

∼ ξ−d
(
c0 + c1

(
λ1

ξ

)π1
+ c2

(
λ2

ξ

)π2
+ · · ·

)
. (3.65)

Here the λi are a list of any microscopic length scales in the problem, the ci are coefficients
that depend at most weakly on temperature, and the πi > 0.

With those assumptions, in the t→ 0 limit the leading behavior is dominated by

Ls ∼ ξ−d ∼ |t|dν ,

and this immediately leads to the Josephson relation:

t−α ∼ C = −T ∂
2Ls
∂T 2

∼ |t|dν−2 ⇒ dν = 2− α. (3.66)
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This, perhaps, feels a bit unsatisfying: we do not really know a priori that, given a quantity A
with [A] = xy we should always take the dimensionless quantity Aξ−y in our scaling theory
– why might it not be the case that we should take Aξz−yλ−z, mixing and matching the
diverging length scale with one of the microscopic ones? Ultimately, the answers to all of
these questions rely on the theory of the renormalization group: RG lets us see where scaling
hypotheses come from, it gives criteria for which measurables acquire anomalous dimensions,
allows us to calculate those anomalous dimensions, and (with a little bit of help) lets us derive
the particular forms of scaling functions.

3.5 Problems

3.5.1 Dotting some i’s and crossing some t’s on Landau expansions

During lectures I will occasionally say that we are dropping terms because they contribute
at sub-leading order in the final answer, so for ease of calculating on the blackboard I ignore
them. You should not trust me when I say things like this, but rather, you should check for
yourself that that’s how the calculation works out! In this problem, let’s double check some
statements from lecture – who knows, maybe we’ll learn that I was leading you astray?

(A) Consider a Landau free energy density written in terms of an order parameter
η, a temperature t = (T − Tc)/Tc, a external field B, and constants a, b, c which
is

L = −Bη + atη2 − cBη3 +
b

2
η4.

• (i) What is the critical exponent δ, which characterizes how B varies with η
at T = Tc when both B and η are small? Writing B as a power series in η,
what is the next higher order term that comes from including this η3 term?

• (ii) What is the critical exponent γ, which characterizes

χT =
∂η(B)

∂B
∼ |t|−γ

when B=0?

(B) Consider a different Landau free energy density in the absence of an external

field, L = a2η
2 + a4η

4. In class we wrote, a2 = a
(0)
2 + ta

(1)
2 + · · · and a4 =

a
(0)
4 + ta

(1)
4 + · · · , we argued that a

(0)
2 = 0, and I claimed that we only needed to

keep the a
(1)
2 and a

(0)
4 terms to get the right scaling. Keep terms corresponding

to both a
(2)
2 and a

(1)
4 , and then solve for the equilibrium values of the order

parameter. What is the critical exponent β, which characterizes η ∼ |t|β below
Tc? What is the order of the first correction?

3.5.2 Flavors of various transitions in a Landau Theory

Suppose your favorite system is described by the following Landau free energy density:

L =
a

2
η2 +

b

4
η4 +

c

6
η6,
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where both a and b could be of either sign (i.e., they might depend on whether you are
above or below the critical temperature), and c > 0 for stability37. In this problem we want
to understand a little bit more about how Landau theory can capture some aspects of both
continuous and discontinuous transitions.

(A): Behavior of the order parameter In this part, we’ll first derive expres-
sions for the equilibrium value of the order parameter everywhere in the a − b
plane of parameter space by extremizing L – this will tell us where the order
parameter is zero, where it is not, where it changes, etc.

• (i) Consider the case in which a < 0: what is η2?

• (ii) Consider the case in which a > 0 and b > 0: what is η?

• (iii) Consider (with care!) the case in which a > 0 and b < 0: what is going
on with η here?

(B): Zero-field phase diagram Use the results of part (A) to create a reason-
able sketch of the a− b plane of the phase diagram. This sketch should include:

• (i) The positions of the phase boundaries

• (ii) A representative sketch of form of L in each region

• (iii) An indication, for each phase boundary, whether the order parameter
changes continuously or discontinuously across the transition

3.5.3 Landau theory (but not for a magnet)!

Liquid crystals are composed of long, rod-like molecules. At high temperatures these molecules
point every which way, but at low temperatures the molecules tend to align in the same direc-
tion. But the molecules do not have a true vector character, so if we think of them like vectors
they don’t care about whether they are parallel or anti-parallel. A good order parameter for
this type of ordering (called “nematic38” order) is not a scalar but a matrix, Q. Things
can get more complicated (and less diagonal-looking), but for the basic isotropic-nematic
transition the typical average value of Q is simple:

Q =

 2
3
S 0 0
0 −1

3
S 0

0 0 −1
3
S

 ,

where I’ve chosen a coordinate system where one axis is in the direction the molecules are
aligned in, and the scalar S is a measure of how aligned the molecules are39.

Let’s build a Landau free energy density for this! Because L is a scalar, and it must not
depend on the direction the molecules happen to be lined up in, and because Q transforms

37Such a free energy density, where a and b are both functions of t = (T − Tc)/Tc, and p = (P − Pc)/Pc,
can be used to try to model a mixture of Helium-3 and -4, for instance

38From a greek word for “thread”
39For instance, if θ is the angle each molecule makes with respect to the average direction of alignment,

then S = 1
2

〈
3 cos2 θ − 1

〉
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like a tensor under rotations, we are forced to build L out of traces of powers of Q (recall:
the trace of a matrix is the sum of its diagonal elements; this is invariant under rotations of
the coordinate system the matrix is written in). To fourth order:

L =
3r

4
Tr
(
Q2
)
− 3w

2
Tr
(
Q3
)

+
9u

8
Tr
(
Q4
)
.

Notice that, physically, the cubic term is non-zero precisely because the order parameter
doesn’t depend on alignment vs anti-alignment (as it would if we picked a vector order
parameter). In our case, since Q is so simple, explicitly re-write this as a Landau free energy
just in terms of powers of S. Let w, and u be positive constants, and r be positive for high
temperatures and negative at low temperatures (i.e., something like r = a(T−Tc) for positive
constant a.

(A) Qualitatively sketch the function L(S) for temperatures above, below, and at the
critical temperature.

(B) The critical temperature, rc, and the value of the order parameter at the critical
temperature, Sc, can be found by simultaneously (a) extremizing L to find the equilibrium
value of S and (b) requiring that the value of the equilibrium L be continuous (although
obviously not smooth) as you go across the transition from the isotropic (S = 0) to the
nematic (S = Sc) phase40. What are rc and Sc?

(C) Because of that cubic term in L, we have a model of the isotropic-nematic transition
which is discontinuous in the order parameter – this means that there will be a latent heat
associated with the transition. To determine it, look extremely close to the transition, writing
L(Sc) and letting r = a(T −Tc). You can calculate the entropy density in the nematic phase
relative to the isotropic phase as s = −∂L

∂T
, and the latent heat that must be absorbed as

q = −Tcs. What is q?

3.5.4 Droplets and dimensionality near phase transitionsLandau
theory (but not for a magnet)!

3.5.5 Data collapse

The other day I was reading a paper41 in which the authors were using a technique called
“active microrheology” to study the mechanical properties of a disordered system: basically,
they simulated the process of dragging a big probe particle through the system at different
velocities, and then measured the friction experienced by that probe particle. (The idea,
in case you’re curious, is that you can relate these measurements of what happens at the
microscopic scale to macroscopic properties of the bulk system – for instance, relating the
friction acting on the probe to the viscosity of the substance.

They did these probe-dragging experiments for various system temperatures and probe
velocities, and got something like the data in Fig. 3.2. Go to this link to find a file called
“scalingData.csv,” a comma-separated collection of data corresponding to that figure. Each
row of that file corresponds to a different temperature of the system. Each row is separated

40This should certainly inform something about your sketch in part A
41Citation omitted, so you can’t just look up the answer – ask me if you’re interested!

https://www.dmsussman.org/assets/teaching/phys526/scalingData.csv
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Figure 3.2: Friction vs probe velocity The friction acting on a probe particle as it is
dragged through a disordered system as a function of the velocity of the probe. Different
colors correspond to different temperatures of the system (blue-to-red→cold-to-hot).

into pairs, corresponding to a bunch of “(probe velocity,friction on probe)” data at that
temperature. The temperatures studied were

0.15, 0.2, 0.225, 0.25, 0.275, 0.3, 0.325, 0.35, 0.375, 0.4, 0.425, 0.45, 0.466

where 0.15 corresponds to the first row of scalingData.csv, and 0.466 corresponds to the last.
The temperatures corresponding to each of the rows can be found in the “Ts.csv” file.

First, we’re going to be manipulating this data, so make sure you can read those files
and reproduce Fig. 3.2.

Next, the authors claim that their data suggests the existence of a critical point. From
the figure above it kind of seems like everything is smooth and continuous as the temperature
of the system is varied, but use the data to predict the critical temperature of the system,
Tc, and scaling exponents which you may call β and γ. (The analogy isn’t perfect, but feel
free to think of “friction” as an order parameter and “velocity” as an imposed external field.)
Part of your submission should include a plot that justifies your predictions.

3.5.6 More Data collapse

The other day I was reading a paper in which the authors were trying to figure out if a
dense monolayer of cells cultured from dog kidneys42 were going through a phase transition
associated with rigidity (i.e., turning from a disordered fluid to a disordered solid). Why not
just, you know, poke at the cells and see if it’s rigid or not? Great question – I guess we have
to assume that doing these experiments on cells is really really hard. Anyway, what they
did instead was watch long videos of the monolayer of cells, and quantify how long they had
to wait to see a rearrangement of cells. They did these experiments while varying a bunch
of regulatory pathways that controlled various things (myosin contractility, organization of
adhesive proteins inside the cell, and lots of other things I didn’t understand). They got
something like the data in Fig. 3.3. We want to know if they observed something that is

42I don’t know, and I’m not going to ask
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more like a phase transition, or something that is more like how the viscosity of liquids vary
continuously with temperature

Figure 3.3: Something like he energy barriers to cell-cell rearrangements (inferred from
how long one has to wait to observe them) on the y-axis, as a function of controlling some
regulatory pathway in cells that helps determine the overall shape (more rounded, more
irregular) on the x-axis. Each point is a different experimental result, and points have been
color-coded by how much individual cells are just jiggling around most of the time (which is
kind of like an effective temperature).

We’re going to be manipulating this data, which you will find a link to on the canvas
page for this assignment. The top row contains 11 numbers (corresponding to the rows
for experiments 1-11), and lists the effective temperature (“jiggle strength”) at which each
experiment was done). The second row contains a list of 40 entries (corresponding to the
x-axis of the plot above). Finally, there are rows for each “Experiment.” Each of the entries
is the observed/inferred energy barrier (corresponding to the y-axis on the plot above)43.

(A) Use the spreadsheet and your program of choice (Mathematica? Python?
Matlab? Excel? Whatever...) to reproduce Fig. 3.3 above (I obviously don’t care
about all of the details of the styling – just load the data and plot it). Include in
your submission the code to generate the plot and the plot itself.

(B) We want to know if all of this data suggests the existence of a critical
point. The authors suggest that “barriers to cell rearrangement” are like a order
parameter that is “thermodynamically” conjugate to this cellular shape parame-
ter, in the same way that m and h are conjugate to each other. They furthermore
assert that observing the magnitude of cell motion in between rearrangements
is like a measurement of an effective temperature. Given all of that, write down
something analogous to the Widom scaling hypothesis for these variables, and
see if you can collapse the data an infer the existence and properties of a critical
point. This will require you to try to vary Tc, β, and ∆ to achieve a collapse.

43So, for instance: one of the points on the plot at jiggle strength 1.53 (Expt5) and cell shape parameter
0.0041472 (column E) has coordinates in the plot corresponding to the {E2, E11} cells in the spreadsheet.
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You could do this by blindly guessing and checking different numbers, but
you could also think about the limits of the scaling functions and try to be more
systematic. In any event, your submission should include: (i) a description of
your strategy for finding the best collapse of the data, (ii) a plot showing the
quality of the data collapse you achieve, and (iii) your estimate of Tc and of the
exponents β, γ, and δ.
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Chapter 4

Probability, big numbers, information,
and entropy!

In the last chapters we looked at thermodynamics as a phenomenological theory in which
empirical observations were elevated into a set of “laws” that formed a consistent mathemati-
cal framework, a framework which was appropriate for treating various “black-box” systems.
We then studied phases and phase transitions through a similarly phenomenological lens,
letting ourselves be guided by symmetry principles. Ultimately, we want to see how that
framework arises from the actual microscopic rules that real systems evolve according to,
and this will rely on the statistical properties of having large numbers of interacting degrees
of freedom. In this brief chapter we will cover the parts of probability theory that we will be
using. Some of the chapter will be standard “here are some mathematical definitions” stuff,
some of it will be calculational tools and tricks to use down the road, and some of it will be
an alternate, information-centric approach to what we mean by “entropy.”

Note that Appendix B contains the basic definitions (of random variables, probability
distributions, characteristic functions, cumulants, and so on) that we use in this chapter. In
the lectures I will typically do one of the observation sections immediately below, and then
review the appendix in a lecture as needed.

4.1 A funny observation

4.1.1 Version 1

Just the other day44, I was generating configurations of the standard 2D Ising model using
this web simulation applet. I played around at various temperatures and at field h = 0, letting
the simulation reach what seemed like a point where the average energy stopped changing in
time. I saved a bunch of these images of snapshots at different temperatures, and compressed
those images using an off-the-shelf algorithm on my computer, bzip2, and compared the size
in bytes of the compressed image the size in bytes of one of the high-temperature images. I
plotted the results in Fig. 4.1, and I was shocked! Just looking at “how much can I compress
this image” I started to see something that looked suspiciously like the behavior of some of

44for fun, you know?

77

http://mattbierbaum.github.io/ising.js/
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the static scaling plots we met in the last section! What is the connection between entropy
– which so far seems like a thermodynamic concept – and information and our ability to
compress data? Let’s find out!

Figure 4.1: Compressing pictures of the 2d ising model with no field This figure was
generated by saving snapshots of the 2D ising model, computed using this link at various
temperatures and at field h = 0. Mathematica was used to take each image and compress
it (using the default “Compress[]” function). The y−axis shows the size of the compressed
image (using the “ByteCount[]” function) divided by the size of the compressed image at
high temperature – i.e., the plot shows as a function of T how much more Mathematica
was able to compress the various images relative to the most disordered image. Note how in
the main plot there is a blue dot just to the left of the lowest red dots (where the coloring
corresponds to above vs. below the critical temperature of the model). The inset shows a
scaling-like plot of the log compression ratio vs the log of |T − Tc|−1.

4.1.2 Version 2

Just the other day45 I was generating random strings of characters in the English language...
just things like “bbaykfsadcajakakcjbjhkmgbjacbe” or “aibacgoifabxhhkjtfeaicsublijua”, etc.
I started compressing these strings using off-the-shelf algorithms on my computer – bzip2
and gzip, the details didn’t seem to matter – and compared the length of the compressed
string to the length of the original string. I repeated this a bunch of times, for sequences
of different length, and for different probability distributions from which I was generating
my random strings (if you’re curious, they were power-law distributions parameterized by a
decay strength α). The results are in Fig. 4.2, and I was shocked! Apparently, as I started
compressing longer and longer strings, the amount I was able to compress them was bounded

45for fun, you know?

http://mattbierbaum.github.io/ising.js/
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by what I’ve labeled H(α) in the figure – the entropy of the probability distribution! How
is entropy – which so far seems like a thermodynamic concept – related to computation and
information compression? Let’s find out!

Figure 4.2: Compressing randomly generated strings The average ratio of the length
of a compressed (“zipped”) random string compared to its original length, as a function
of some parameter defining the probability distribution used to generate the strings (here
α = 0 means all letters are equally likely, and larger values correspond to increasingly biased
distributions of letters). This ratio is bounded by the entropy of the probability distribution
used to generate it, and the same bound is approached for different compressions methods.

4.2 Moment and cumulant generating functions

In Chapter 5 we will introduce probability density functions (pdf – see Appendix B for
definitions) whose variables are the classical microstate of a system – i.e., the complete list
of particle positions and momenta – these ensemble densities will then be the building blocks
of our statistical mechanical description. It will then be quite helpful to have in mind two
related mathematical constructions.

The first is the characteristic function, which is simply the Fourier transform of the pdf.
For a pdf for a single random variable, this is:

p̃(k) = 〈e−ikx〉 =

∫
dx p(x)e−ikx. (4.1)

Likewise, if you know the characteristic function, the pdf is the inverse FT46:

p(x) =
1

2π

∫
dk p̃(k)eikx. (4.2)

The characteristic function is also known as the moment generating function: assuming
that the moments of the distribution exist, we can expand the exponential47 in the definition,

46Appendix B has an example of a distribution where it is straighforward to work out the characteristic
function first and from it obtain the pdf.

47We’ll be seeing a log of factorials from here on out; we apparently owe Christian Kramp for the now-
standard n! notation [35]. This was introduced in 1808, the same year that Gay-Lussac announced his law
concerning the volumes of chemically reacting gases. Coincidence [36]?
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exp(−ikx) =
∑∞

n=0
(−ik)n

n!
xn, so that

p̃(k) = 〈
∞∑
n=0

(−ik)n

n!
xn〉 =

∞∑
n=0

(−ik)n

n!
〈xn〉. (4.3)

So: if you can expand the characteristic function in powers of k, the coefficients of the
expansion give you the moments (up to some factor of ±n!). We can also do manipulations
of this type to get, e.g., relative moments pretty easily:

eikx0 p̃(k) = 〈exp(−ik(x− x0))〉 =
∞∑
n=0

(−ik)n

n!
〈(x− x0)n〉. (4.4)

Let us further define the cumulant generating function to be the log of the characteristic
function48. We will define the cumulants of the distribution by in terms of the prefactors of
the expansion of this function:

ln p̃(k) ≡
∞∑
n=1

(−ik)n

n!
〈xn〉c. (4.5)

From the definition of the characteristic function, and then by expanding the log as ln(1+x) =∑∞
n=1

−(−x)n

n
, we have

ln p̃(k) = ln

(
1 +

∞∑
n=1

(−ik)n

n!
〈xn〉

)
(4.6)

=

(
∞∑
n=1

(−ik)n

n!
〈xn〉

)
− 1

2

(
∞∑
n=1

(−ik)n

n!
〈xn〉

)2

+
1

3

(
∞∑
n=1

(−ik)n

n!
〈xn〉

)3

+ · · ·

By comparing the definition of the cumulants from Eq. 4.5 with the expansion in Eq. 4.6
(i.e., matching terms of order kn), we can relate the cumulants to the moments. For example,
the first two are pretty easy to see:

〈x〉c = 〈x〉 (4.7)

〈x2〉c = 〈x2〉 − 〈x〉2 =
〈
(x− 〈x〉)2

〉
(4.8)

〈x3〉c =
〈
x3
〉
− 3

〈
x2
〉
〈x〉+ 2 〈x〉3 (4.9)

So far, this probably feels like just a lot of manipulations of definitions. It might be helpful to
think of the cumulants as a hierarchical collection of the most important ways of describing
a distribution. That is, you might first want to know about the most typical result coming
from some distribution is (the mean), and if you know then mean what the typical spread
around that value is (the variance), and from there the skewness, and the kurtosis, and
then the... While the second moment of a distribution depends on the first moment, the
second cumulant is independent of the first cumulant. We will also develop in the next few

48Some people would call this the “second characteristic function.” The difference is whether we end up
with something which is defined independent of whether the moments themselves are well-defined.
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chapters a deep connection between cumulants and various thermodynamic properties, and
between partition functions and characteristic functions. This will be an especially helpful
calculational tool when we try to describe not ideal but rather interacting systems.

Graphical connection between moments and cumulants The combinatorics of
coefficient matching above might seem difficult to parse; there is a fun graphical way of
remembering how to connect moments and cumulants. Notationally, let’s represent the
nth cumulant as a bag with n points inside of it (conveniently, since 〈x〉c = 〈x〉, a bag
with one point is the same as one point on its own). Then, the mth moment can be
graphically expressed as the sum of all ways of distributing m points among bags. See
Fig. 4.3.

Figure 4.3: Graphical expansion of the first three moments

Slightly more formally, one might say you represent the nth cumulant as a connected
cluster of points, and obtain the mth moment by adding together all subdivisions of
m points into groupings of connected or disconnected clusters. The contribution of each
subdivision to the sum is then the product of the connected cumulants it represents. This
graphical connection between moments and cumulants is the basis for several diagram-
matic computations (in statistical physics, and in field theory)... Will we see it again in
this class? Stay tuned!

4.3 Adding random variables together and the central

limit theorem

We typically think of statistical mechanics as being a relevant framework when the number
of microscopic degrees of freedom, N , becomes very large. Indeed, in the thermodynamic
limit, N →∞, a number of mathematical simplifications become available to our analysis of
how systems behave. Let’s first discuss what probability distributions emerge when you sum
random variables together, which will lead us to the classical49 central limit theorem. The
central limit theorem is an absolutely core engine in allowing us to make precise statements
– of the sort we encountered in thermodynamics – in the context of an inherently statistical
framework. More explicitly, for instance, we observed (empirically) that heat flows from
hot to cold – not sometimes, or most of the time, but all the time. If we’re going to start
probabilistic arguments at the microscopic core of our theory, how do we end up with precise,

49As opposed to the Lyapunov or other versions with weaker conditions.



82 CHAPTER 4. PROBABILITY, BIG NUMBERS, INFORMATION, AND ENTROPY!

essentially deterministic thermodynamic statements? In the coming chapters we’ll see how
the CLT gets us where we want to go.

4.3.1 Adding independent random variables

Suppose you have two pdfs of different (continuous) independent (but not necessarily iden-
tical) random variables, pX(x) and pY (y), and are interested in the pdf associated with the
random variable Z = X + Y – how could we derive this? One way is to think about the
cumulative probabilities:

PZ(z) = probability(Z ⊂ [−∞, z]) = probability(X + Y ≤ z).

We can write an integral expression for this, asking for the probability that Y takes a value
in the range [−∞, z − x] for all possible values of x:

PZ(z) =

∫ ∞
−∞

dx

∫ z−x

−∞
dy pX(x)pY (y) =

∫ ∞
−∞

dx

∫ z

−∞
dw pX(x)pY (w − x),

where we have changed variables, y = w−x. From here, we can find the pdf by simply taking
the derivative of the cumulative probability function:

pZ(z) =
dPZ(z)

dz
=

∫ ∞
−∞

dx pX(x)pY (z − x). (4.10)

To get an intuition, let’s think about what this looks like for simple, uniform distributions.
For instance, suppose both X and Y are drawn from a uniform distribution in the domain
[0, 1]:

p(x) =

{
1 x < 1
0 otherwise.

Using this as both pX and pY in Eq. 4.10, we can evaluate the integral to find

pZ(z) =


z for 0 < z ≤ 1

2− z for 1 < z ≤ 2
0 otherwise.

What if we consider a new random variable formed by summing three random variable from
this uniform distribution rather than two? We can iterate on our solution, combining the
uniform distribution for pX(x) and the piecewise linear function above for the distribution as-
sociated with the sum of two variables. Let’s call our new random variable Z3, as it represents
the sum of three variables; by direct integration we find

pZ3(z) =
1

2
·


z2 for 0 < z ≤ 1

−2z2 + 6z − 3 for 1 < z ≤ 2
(3− z)2 for 2 < z ≤ 3

0 otherwise.

We can repeat this iterative procedure as we sum more and more of these uniform random
variables together, doing ever more piecewise integrations of polynomial terms. The result,
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Figure 4.4: The uniform sum distribution for various choices of n. Dashed lines
show the comparison with a Gaussian distribution having the same mean and variance as
the corresponding uniform sum distribution.

considering the sum of n > 1 summed variables each drawn from the unit interval, can be
written as

pZn(z) =
1

(n− 1)!

n∑
k=0

(−1)k
n!

k!(n− k)!
(x− k)n−1

+ , (4.11)

where

(x− k)+ =

{
x− k for x− k ≥ 0 < 1

0 otherwise.

These pdfs are known as the uniform sum distributions or the Irwin-Hall family of distribu-
tions, and examples of them are plotted for various choices of n in Fig. 4.4. The mean and
variance of these distributions are n/2 and n/12 respectively, and the figure also shows a
Gaussian distribution with the same mean and variance. I suspect you are not surprised to
see that pZn(z) starts approaching a Gaussian shape, even for relatively modest values of n.

4.3.2 The Central Limit Theorem

Clean this up
With that as a warm up, let’s be more general and consider the sum of N random

variables, X =
∑N

i=1 xi, where the random variables xi have some joint PDF p(x). What is
the cumulant generating function of the sum, ln p̃X(k)? Well,

ln p̃X(k) = ln
〈
e−ikX

〉
= ln

〈
exp

(
−ik

N∑
i=1

xi

)〉
= ln p̃x (k1 = k, k2 = k, . . . , kN = k) .

(4.12)
That is, it is the same as the log of the joint characteristic function of the xi, but evaluated
at the same k. Let’s expand each side of the above equation, writing things so we can easily
match powers of k:

∞∑
n=1

(−ik)n

n!
〈Xn〉c = (−ik)

N∑
i=1

〈xi〉c +
(−ik)2

2!

N∑
i,j=1

〈xixj〉c + . . . (4.13)
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Matching terms of order kn, we see that

〈X〉c =
∑
i

〈xi〉c, 〈X2〉c =
∑
i,j

〈xixj〉c, . . . (4.14)

Now, we specialize to the case of the classical central limit theorem by supposing that
the xi are both independent, so that p(x1, . . . , xN) = p1(x1)p2(x2) · · · pN(xN) and identically
distributed, i.e., each of the labeled probability distributions pi(x1) are the same50, so that

p(x1, . . . , xN) =
N∏
i=1

p(xi). (4.15)

Now, the fact that the variables are independent means that the cross-correlation cumulants
in Eq. 4.14 vanish, so that in the double sum only terms with i = j contribute. Thus, we get
that

〈Xm〉c =
N∑
i=1

〈xmi 〉c. (4.16)

The condition of identically distributed takes us back to the case we looked at with the
binomial distribution: the cumulants of N repeated but independent draws from the same
distribution are easily related to the cumulants of the single-random-variable distribution:

〈Xm〉c =
N∑
i=1

〈xmi 〉c = N 〈xm〉c . (4.17)

The (classical) Central Limit Theorem follows directly. Define a new random variable to
be

y =
X −N 〈x〉c√

N
, (4.18)

and then one computes its cumulants:

〈y〉c = 0,
〈
y2
〉
c

=
〈X2〉c
(
√
N)2

=
〈
x2
〉
c
, 〈ym〉 =

N 〈xm〉c
Nm/2

. (4.19)

In words: as N becomes large, the distribution for a sum of iid random variables with mean
µ and variance σ2 converges to a distribution that itself has a finite mean, a variance that
only grows as

√
N , and higher-order cumulants that all decay to zero as N → ∞. Thus,

sums of random variables converge to normal distributions, ignoring the details of what the
original random variables looked like (up to some point). Note that the condition for this all
working is really (a) the existence of the moments in question, and (b)a condition on how
correlated the variables are allowed to be:

N∑
i1,...im

〈xi1 . . . xim〉c � O(Nm/2).

50This combination of conditions, independent and identically distributed, is often abbreviated iid.
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4.4 Adding exponentially large quantities together

The central limit theorem is a core result in how the thermodynamic limit works; another
crucial piece of mathematical technology associated with N → ∞ is the (surprising?) way
that very large numbers behave when you add them together. What do I mean by “very large
numbers,” there? In statistical physics we quite frequently run into (1) intensive variables
(like T , P , etc.), which are independent of system size (O(N0)), (2) extensive variables (like
S, E, etc.), which scale linearly with system size (O(N1)), and (3) exponential variables (like
volumes of phase space), which fantastically large: (O(V N) = O(eaN). Exponentially large
quantities behave a bit differently under addition than “normal” numbers, and this helps
make calculating thermodynamic limits possible.

Summing exponentials

To warm up, let’s suppose we want to sum together a large number of quantities which are
themselves both positive and exponentially large:

S =
N∑
i=1

Ei, (4.20)

where the terms Ei ∼ O(exp(Nai)) and there are at most N ∼ O(NP ), i.e. the number of
terms is at most polynomially (rather than exponentially) large in N .

This might seem tough, but actually: we can approximate the entire sum by just picking
out the largest term! That is,

S ≈ Emax. (4.21)

Here’s the specific sense in which we can use this claim. First, it is clear that the we can
bound the sum by saying that the sum is surely in between the largest term and N times
the largest term:

Emax ≤ S ≤ NEmax. (4.22)

Next, let’s take some natural logs and divide by N :

amax
N
≤ lnS

N
≤ amax

N
+

lnN
N

, (4.23)

but that last term on the right we can write (by assumption about the number of terms) as

lnN
N

=
p lnN

N
, (4.24)

and this goes to zero as N →∞! Thus, as N →∞ we are bounding our sum by two terms
which become the same, and we can write

lim
N→∞

lnS

N
=

ln Emax
N

= amax. (4.25)

So, even if the second-largest ai is only ever-so-slightly less than the maximum one, upon
exponentiation N times it gets completely dominated by the larger term.
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Integrating exponentials (Saddle-point integrals)

We generalize this result in order to make a similar claim about integrating over a function
that appears in an exponential multiplied by N , I =

∫
dx exp(Nφ(x)). We will see that this

integral is dominated by the place where the function φ(x) itself is maximized.

To see that, we Taylor expand φ about its maximum xm

I =

∫
dx exp

(
Nφ(xm)− N

2
|φ′′(xm)|(x− xm)2 + · · ·

)
(4.26)

This term has two types of corrections encoded in that set of trailing dots. First, of course,
there are the higher-order terms in the expansion of the function φ(x) about its maximum
value; these terms (if calculated) lead to a series of additional terms in powers of 1/N . Second,
there are contributions to this sum from any additional local maxima the function φ(x)
might have. However, by arguments similar to those made in the previous subsection, any
such contribution will be completely subdominant! Thus, we truncate the series at quadratic
order as above and write

I = eNφ(xm)

∫
dx exp

(
−N

2
|φ′′(xm)|(x− xm)2

)
. (4.27)

This is just a Gaussian integral, albeit one without its normalization factor, so we get

I = eNφ(xm)

√
2π

N |φ′′(xm)|
⇒ lim

N→∞

ln I
N

= φ(xm). (4.28)

Example: deriving Stirling’s formula The machinery of saddle point integration
can be used to derive Stirling’s approximation for the factorial. Start by noting that

N ! =

∫ ∞
0

xNe−x, (4.29)

which can itself be seen by starting with
∫∞

0
exp(−αx) = 1/α, taking N derivatives, and

setting α = 1. Some rearrangements of the above equation (writing φ(x) = ln x− x/N),
expanding about xm = N , and doing the Gaussian integral gets you to

N ! = NNe−N
√

2πN

(
1 +O

(
1

N

))
, (4.30)

the log of which is Stirling’s formula. Filling in the missing steps should be straight-
forward, and also an excellent way to make sure you understand the machinery of this
method.
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4.5 Information, Entropy, and unbiased estimation

We’ll close out this chapter by taking an information-based view of what we mean by entropy,
one introduced by Shannon51 in a groundbreaking 1948 paper52. We will discuss the connec-
tion between information and entropy, and by thinking about ‘unbiased” ways of assigning
probabilities, we will formalize the subjective procedure of assigning probabilities discussed
at the beginning of this chapter.

4.5.1 Shannon entropy

Let’s change our focus from one in which we’re characterize properties of the macroscopic
world around us to a setting which seems very different: the problem of sending messages over
a wire. We begin by imagining a source trying to send us a message from an “alphabet” of k
characters, {a1, . . . , ak} that have an discrete associated probability distribution p(ai), (here
by “alphabet” we mean the characters in the alphabet together with their single-character
probability distribution, {ai, p(ai)}. This isn’t too much of a stretch: the actual alphabet has
characters, and indeed, some letters appear more frequently than others in real messages.

In a bit of a simplification, let’s assume that the characters are iid (in real messages there
are, of course, correlations; we neglect them in this idealized setting). With this assumption,
the probability that the source sends the n-character message x = x1x2 · · ·xn is just

p(x) =
n∏
i=1

p(xi). (4.31)

Let’s use the symbol Xn to denote the entire ensemble of n-length messages that are chosen
under the assumption that the xi are iid.

Compressing messages If one wanted to naively transmit the entire message, one would
have to send∼ ln k bits per symbol in the message, or∼ n ln k for the entire message. Suppose
the length of the message, n, grows very large. Is it possible to compress the message into
a shorter string that conveys the same “information”? As long as p(ai) is not uniform, then
yes! The total number of possible messages is kn, but for large n most of those messages
are extremely unlikely. In a “typical” long message we expect each character to occur about
ni = np(ai) +O(n1/2) times. So the number of typical strings, g, is not kn but rather

g =
n!∏k

i=1(np(ai))!
, (4.32)

51A massively important figure often cited as “father of information theory,” but also important for
much more trivial accomplishments, such as co-inventing the very first wearable computer (to try to cheat
at roulette) and creating a computer that used Roman numerals both on its keyboard and in its internal
representation.

52Ref. [37]. Note that Shannon named the symbol of entropy H, after Boltzmann’s H-theorem, which
we’ll encounter in the very next chapter.
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which is the number of ways of partitioning the set so that each letter in the alphabet occurs
the typical number of times. Applying Stirling’s formula, we find that

log2 g ≡ nH(X) ≈ −n
k∑
i=1

p(ai) log2 p(ai), (4.33)

where H(X) is the Shannon entropy of the ensemble X = {ai, p(ai)}. If we imagine adopting
a (completely impractical, but imaginable) code for messages of length n where the integers
label typical messages of such length, a typical n-letter string could be communicated using
about nH(X) bits. To be extra explicit, for discrete probability distributions with values
{pi} we will be defining the entropy in this way:

S = H(X) = −〈ln p〉 = −
∑
i

pi ln pi. (4.34)

One is, of course, tempted to generalize this to the continuous case by writing S = −〈ln p(x)〉 =∫
dxp(x) ln p(x), but... this seems to depend in a non-trivial way on what units one measures

x in. The resolution to this – that there is a specific choice of units that makes the informa-
tion entropy defined this way agree with the thermodynamic one – is something we’ll tackle
in upcoming chapters.

Compressing binary messages Let’s briefly show this in more detail for a
binary alphabet: each character is either zero with probability p or one with
probability 1 − p, so the ensemble X is completely specified by the single
value p. Well, for large values of n there are going to be about np zeros and
n(1− p) ones, and the number of distinct strings of this form is given by the
binomial coefficient. So, using log x! = x log x− x+O(log x), we have:

log g = log

(
n

np

)
= log

(
n!

(np)!(n(1− p))!

)
(4.35)

≈ n log n− n− (np log(np)− np+ n(1− p) log(n(1− p))− n(1− p))(4.36)

= nH(p), (4.37)

for H(p) = −p log p− (1− p) log(1− p). (4.38)

What about actual compression? Again, we make up an integer code that
labels every typical message. There are about 2nH(p) messages, and a priori
typical messages occur with equal frequency, so we need to specify a given
message by a binary string whose length is about nH(p). If p = 1/2 (and
thus H(p) = 1 for log2) we haven’t done anything: we need as many bits to
communicate the message as there are in the message. But if the probability
p 6= 1/2, our new code shortens typical messages. The insight here is that
we don’t need a codeword for every message, just typical ones, since the
probability of atypical messages is negligible!
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4.5.2 Information, conditional entropy, and mutual information

Shannon entropy is a way of quantifying our ignorance (per letter) about the output of a
source operating with alphabet X: if the source sends an n-character message, we need about
nH(X) bits to know the message. Information quantifies how much knowledge you gain by
knowing the probability distribution the characters came from, i.e., “if you already know the
alphabet, how many fewer bits do I need to transmit to communicate a (typical) message?”.
Well, the total reduction in the number of bits for a n length message from the alphabet of
k characters is

n log2 k − (−n
∑
i

pi log2 pi) = n

(
log2 k +

∑
i

pi log2 pi

)
. (4.39)

Given a knowledge of the pi, we define the information per bit53 as

I(X) = log2 k +
∑
i

pi log2 pi, (4.40)

and we see that information and entropy are one and the same (up to signs and constants).

Information and entropy of the uniform distribution As a quick ex-
ample, suppose we have a uniform distribution of k characters, pi = 1/k.
Well:

S = −k
(

1

k
log2

1

k

)
= log2 k (4.41)

I = log2 k + log2

1

k
= 0. (4.42)

So, the entropy is the log of the number of equal-probability characters (sound
familiar, from the microcanonical ensemble, perhaps?), and there is no infor-
mation in the distribution.

Information and entropy of a delta function distribution The oppo-
site extreme is also trivial to work out. Suppose the distribution is such that
a particular event definitely happens: pi = δα,i. Well:

S = 0 (4.43)

I = log2 k. (4.44)

53Check if Kardar’s convention in calling this info per bit is echoed elsewhere, and reference it. Some
students are confused by discrepancy with, e.g., Wikipedia.
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By knowing the distribution you already know everything about the outcome
of an n-length message, and the entropy (a quantification of ignorance) is
zero.

Finally, suppose we have two correlated sources of information, X and Y (for uncorrelated
sources we would have p(x, y) = pX(x)pY (y)). Then, if I know these correlations then upon
reading a message in Y n I can further reduce my ignorance about a message generated by
Xn, which means I should be able to further compress messages in Xn than I could without
access to Y . This is captured by the conditional entropy,

H(X|Y ) = H(XY )−H(Y ) = 〈− log(p(x, y) + log p(y)〉 = 〈− log p(x|y)〉 , (4.45)

where we see the conditional probability distribution introduced earlier in this chapter. Un-
surprisingly (given the connection between information and entropy above), the mutual in-
formation (in words: “the number of fewer bits per letter needed to specify X when Y is
known) is closely connected: The information about X gained when you learn about Y is

I(X;Y ) = H(X)−H(X|Y )

= H(X) +H(Y )−H(XY ) (4.46)

= H(Y )−H(Y |X),

which is a quantification of the degree to which X and Y are correlated, and is symmetric
under the interchange of X and Y as we see above.

4.5.3 Unbiased estimation of probabilities

We can now use the entropy as a way to quantify subjective assignments of probabilities! To
start, if we know absolutely nothing about a probability distribution, the unbiased estimate
is that every outcome is equally likely. Earlier, we saw that a special feature of a uniform
distribution is that it (a) encodes no information and (b) maximizes the entropy. So, we
generalize the idea of constructing an unbiased estimate as one that maximizes entropy
subject to the constraints of whatever we happen to know.

A specific example should make the idea clear. Suppose we observe a discrete random
variable for a while; we don’t pay too much attention to how often different outcomes occur,
but we manage to observe that it has a specific mean value, 〈F (x)〉 = f . We want make
an unbiased estimate of the probabilities pi, and we will use Lagrange multipliers (α, β) to
impose the two constraints we now know about the probability distribution: we know it is
normalized and we know it has a specific mean:

S ({pi}, α, β) = −
∑
i

pi ln pi − α

(∑
i

pi − 1

)
− β

(∑
i

piF (xi)− f

)
. (4.47)

Maximizing the entropy with respect to the possible probabilities pi:

0 = dS
dpi

= − ln pi − 1− α− βF (xi) (4.48)

⇒ pi = e−(1+α)e−βF (xi). (4.49)
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Given this form (which should remind you of Boltzmann weights!), we can then solve for α
and β that satisfy the given constraints.

Make broader points about maxEnt formalism [38]. Note (for later reference) the Kubo
derivation on page 91 (Near Equilibrium ensembles). [39] has a nice Gibbs-to-Shannon-to-
Jaynes-to(self-consistent inference) path

4.6 Problems

4.6.1 Simple mutual information calculation

Suppose you have random variables X1 and X2, with a joint PDF of

p(x1, x2) ∝ exp

(
−a11x

2
1

2
− a22x

2
2

2
− a12x1x2

2

)
.

Calculate the mutual information, I(X, Y ).

4.6.2 Biased random walks

Consider a biased random walk that starts at the origin and is composed of N steps of
length l. The direction of each step is picked by choosing the azimuthal angle, 0 ≤ φ ≤ 2π
from a uniform probability distribution, and choosing the polar angle, 0 ≤ θ ≤ π from the
probability density function p(θ) = 2

π
sin2

(
θ
2

)
. Note that I’ve already absorbed the factor

of sin θ to account for the solid angle:
∫
p(θ)dθ = 1. Each step is independent of the other

steps. I want to know “how big” this random walk is:

• Find the mean position of the end of the random walk by calculating 〈x〉,
〈y〉, and 〈z〉.

• Find the characteristic size of the random walk by calculating 〈x2〉, 〈y2〉, and
〈z2〉.

• Since each step chooses a direction on the sphere of radius l, the variables
x, y, and z are not independent (for step i, x2

i + y2
i + z2

i = l2). Why didn’t I
ask you to calculate the covariances 〈xy〉, 〈yz〉, and 〈xz〉?

4.6.3 Unbiased estimation

In this section we’ll be deriving probability distributions associated with velocities (say, of a
gas particle) under various circumstances, by generalizing the discrete “biased estimation of
probabilities section of the notes. In both cases, let’s think of a random variable v that can
take any value −∞ ≤ v ≤ ∞.

Constrained speed:

Find the unbiased estimate of the probability distribution, p1(v), subject to the
constraint that you know the speed: 〈|v|〉 = c
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Constrained kinetic energy:

Find the unbiased estimate of the probability distribution, p2(v), subject to the
constraint that you know the average kinetic energy: 〈mv2/2〉 = mc2/2.

Generalization [worth zero points! Just think about it]:

It sure seems like, from the above two examples, that when the first n moments
of a distribution are specified, the unbiased estimate is an exponential of an
nth-order polynomial. Is this the case?

4.6.4 A saddle-point problem

I know that you know that the Taylor expansion of ex is
∑

n
1
n!
xn. Use the method of saddle-

point integration to derive an asymptotic formula for the coefficient 1
n!

in the limit of large
n. How does this compare to Stirling’s formula for n!?

4.6.5 New distributions from old

The lecture notes will tell you how to perform changes of variables on pdfs54... but what if
we want to find pdfs associated with combinations of other random variables? In some cases
we know what will happen (like, “summing a large number of random variables will tend
towards a Gaussian” from the central limit theorem), but what about more generally? In
this problem, you may want to think about both pdfs and/or cumulative probabilities in
order to get at the answer:

(A): Suppose you have two pdfs of different (continuous) independent random
variables, pX(x) and pY (y). Write an integral expression for the pdf for the
random variable Z = X + Y ?

(B): Are addition and subtraction equivalent, here? Write instead a expression
for the pdf of the random variable Z = X − Y .

(C): Same setup, but write an integral expression for the product of the random
variables, Z = XY

(D): Show that your expressions derived above are reasonable via a little numeri-
cal experiment. Assume thatX and Y are iid variables uniformly distributed
in the range [−1, 1]. What do your integral expressions simplify to? Use any
compute program / programming language to generate a reasonably large
number of random numbers; manipulate them appropriately and by make
some histograms to demonstrate that your expressions fit your data.

(E): What about the division of random variables? Consider the random vari-
able Z = X/Y ... Is a compact integral formula for this easy to obtain? Do
more numerical experiments, supposing X and Y are iid variables uniformly

54Like, what if you know p(x) by you really want the probability distribution p(y) where y = f(x)
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distributed in the range [1, 2], make a histogram of Z. Do the same suppos-
ing that X and Y are both in the range [0, 1], and then also in the range
[−1/2, 1/2]. Do you observe (empirically) any patterns?

4.6.6 Manipulating random variables

I’ve been working on a problem where I want to figure out the elastic properties (bulk modu-
lus, shear modulus, etc.) of a disordered colloidal solid just by looking through a microscope
and watching the colloids fluctuate in space. After working hard I come up with an argument
that if I measure a particular funny looking quantity, Λxy (defined below) over windows of
size L = 2R, then the variance in that variable will be proportional to the inverse shear
modulus:

varΛxy =
kT

4L2
(G(L))−1,

and if I let L get bigger and bigger G(L) will approach the shear modulus of the system.
(You can tell there was hard work involved by the factor of 4: somebody did more than
dimensional analysis for this problem!).

You have no problem with the derivation to get the above expression, but you think in
my actual experiment I’m measuring pure noise. You set out to prove it:

Needed definitions

The definition of the quantity of interest is:

Λxy =
n∑
i

∆j (Ayi +Bxi) ,

where {xi, yi} is the spatial position of particle i, there are n particles in the
observation window, ∆j is the x-component of the displacement of particle i
from one time point to the next, and A and B are structural quantities related
to the relative arrangements of particles in the observation window:

A =
a

ac− b2
; B =

−b
ac− b2

a =
n∑
i

(xi)
2 b =

∑n
i (xiyi) c =

n∑
i

(yi)
2

Part A: Warm-up

Let X be a random variable with a Gaussian probability density function with
mean λ = 0 and variance σ2 = 1. Consider the random variable Y = X2. Us-
ing the change-of-variables formula, write down the probability density function,
pY (y). Plot it on a log-linear scale.
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Part B: Structural quantities

You first want to think about A and B as random variables, and decide to slowly
build up to what their distributions are:

Step 1: Assume that each of the particle positions are (1) uncorrelated with
each other in the observation window and (2) uniformly distributed in the range
[−R,R], i.e.

pxi(x) =

{
1

2R
|x| ≤ R

0 |x| > R
.

What is the probability distribution of the quantities x2 and y2? What about
the quantity xy? Using the central limit theorem, write down an estimate of
the probability density function for a, b, and c. Write your answers in terms of
Gaussians with n, R, and all the right numerical factors.

Step 2: You next tackle the denominators, ac − b2. Since this appears in the
denominator, you decide to make some simplifying assumptions (can you think
of any justifications?) and approximate

ac− b2 =
(a+ c)2

4
− (a− c)2

4
− b2 ≈ (a+ c)2

4
.

If the mean of a + c had been zero I would have asked you to do some extra
derivations, but it’s not. Instead, I’ll tell you that (a + c)2/4 is a “non-central
χ2 variable with number of summed parameters k = 1” (wiki link). Given that
information, what is your approximation for the following:〈

ac− b2
〉

= ?

var(ac− b2) = ?

Step 3: You’re finally ready to estimate properties of A and B, which involve
ratios of random variables. Assuming the numerator and denominator have van-
ishing covariance, you approximate:〈

X

Y

〉
=
〈X〉
〈Y 〉

+
〈X〉 varY

〈Y 〉3
+ · · ·

var
X

Y
=

varX

〈Y 〉2
+
〈X〉2 varY

〈Y 〉4
+ · · ·

From all of that, what are your estimates for:

〈A〉 = ? 〈B〉 = ?

varA = ? varB = ?

https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution
https://www.stat.cmu.edu/~hseltman/files/ratio.pdf
https://www.stat.cmu.edu/~hseltman/files/ratio.pdf
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Part C: Combining everything!

You are firmly convinced that the ∆j are just Gaussian distributed with zero
mean and variance (set by the temperature, basically) σ2

∆, uncorrelated with the
structural random variables. Using the facts for a collection of random variables
Xi the variance behaves like

var
∑
i

Xi =
∑
i

varXi

var
∏
i

Xi =
∏
i

(
varXi + 〈Xi〉2

)
−
∏
i

〈Xi〉2 ,

and assuming that the contribution from each of the j particles contributes iden-
tically and independently, give an expression for

varΛxy = var
n∑
i

∆j (Ayi +Bxi)

4.6.7 “Gaussian” cumulants

The Maxwell distribution (describing, say, the speed of a particle in a gas) is

p(x) =

√
2

π

x2

a3
exp

(
− x2

2a2

)
,

where in a gas a is related to the mass and temperature and where x is in the interval
0 ≤ x ≤ ∞. I’m not going to ask you to take the Fourier transform to find the characteristic
function55, but I’m sure you remember the cumulants of a Gaussian distribution, and how
to connect moments to cumulants (hint: graphically? Or from the definitions if needs be?)
What is the variance (second cumulant) of the Maxwell distribution?

4.6.8 Information, compression, and entropy

During class I showed the result of a numerical experiment where I generated a bunch of
random strings, of total length n and made up of 26 distinct symbols (an “alphabet”),
drawing random numbers so that the probability of picking the ith letter of the English
alphabet was

pi ∝ i−α.

I used “gzip,” a universal lossless compression tool, to compress these random strings (“mes-
sages”), and showed a plot of the ratio of the length of the original string to the compressed
string (on average) on the y-axis vs. the parameter α on the x-axis. I showed that in the limit
that n got large (but where, in practice, it didn’t have to be that large), the properly nor-
malized compression ratio approached the Shannon entropy associated with the probability
distribution of the alphabet, H(α).

55life would be easier if x ran from negative infinity to positive infinity instead of starting from zero. Alas.
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Conduct your own numerical experiment!

Choose a discrete alphabet made up of some number of characters, and think of
a one-parameter family of probability distributions by which you could choose
letters in your randomly generated messages:

pi ∝ F (i, α)

for some function F (as in the above, but choose a different distribution). Try to
compress56 randomly generated messages for different α and message length n,
and show that, after proper normalization, your compression efficiency is bounded
by the Shannon entropy.

To get full credit on this problem, you should turn in (a) whatever code you
wrote, (b) a plot showing some measure of “compression ratio” and Shannon
entropy vs α for various n, and (c) an explanation of how you had to define and
normalize the “compression ratio” (length of alphabet? choice of ln vs log2? etc)
so that compression approaches the bound set by the Shannon entropy in the
n→∞ limit.

If you’re interested in learning more about how these ideas are being used, here are an
interesting pair of papers from 2019: [40, 41]

4.6.9 Eigenvalues of matrices with random elements

Theoretical results on the properties of “random” matrices have been used to describe a
(perhaps) surprising number of physical systems – including the mechanical response of
jammed packings and the energy level spacing in heavy nuclei. In this problem we’ll consider
square N ×N matrices that are formed by a two-step process:

1. Generate a square N×N matrix, A, where every element of A are independent random
numbers drawn from a Gaussian distribution of zero mean and standard deviation
σ = 1.

2. Create the symmetric matrix you actually want to think about, B = A + AT , i.e., by
adding A to its transpose.

In this problem you’ll be doing both some analytical work and some numerical work: for
the numerical work you can use any programming language or software you like (python,
matlab, mathematica, fortran, assembly, whatever).

(A): Numerically generate a few ensembles of this type of matrix for N =
2, 4, 6, 8, 10... something like 1000 samples for each matrix size should suf-
fice57. For each size, calculate the eigenvalues λn of each matrix, and sort them

56Python has a gzip.py module, Mathematica has ExportString[string,”GZIP”] commands, etc.
57On even a simple modern laptop this shouldn’t take much computing time, so feel free to do larger N or

more samples per N if you’d like... but do at least this much. For reference: on the 2019 laptop I am typing
on, once I had the code written this took Mathematica about 1.85 seconds to finish.
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from smallest to largest. Create a list of the difference between neighboring eigen-
values, ∆λ = λn+1 − λn. Plot 〈∆λ〉 as a function of N , and plot the histograms
of ∆λ/〈∆λ〉.
(B): Let’s do some theory to try to understand our plots. Let’s work in the

N = 2 ensemble, where each of our matrices look like B =

(
a b
b c

)
. Defining

d = (c−a)/2, write an expression for the difference of eigenvalues of this matrix.
Given how these quantities are defined, what are the probability distributions
that characterize the numbers a, b, c, and d? Finally, calculate a formula for the
probability distribution of the difference in eigenvalues. Compare this formula to
the histograms in part (A). Note: Feel free to numerically calculate anything
else as well, either as a test of the results you are getting or as a hint to what
you should be getting!

(C): Hopefully you found that your result in (B) did an excellent job in de-
scribing all of the histograms you made in part (A)... I wonder how important
our 2-step process for making matrices really was? Conduct two more numerical
experiments. First, what if we ignore the symmetrization step? Create a bunch
of non-symmetric matrices A composed of random gaussians, and compute their
eigenvalues. What’s going on, here? Second, what if we keep the symmetriza-
tion but drop the condition that the initial matrix elements are all drawn from
a Gaussian distribution? Instead, generate a bunch of A matrices where each
element is just randomly chosen to be either ±1, compute their ∆λ, and make
some histograms as N increases.
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Chapter 5

Kinetic Theory: from Liouville to the
H-theorem

Perspective and questions for this chapter

At the beginning of class we talked about thermodynamics as a phenomenological theory
that encodes “black-box” observations of material systems into a coherent set of physical
laws – laws of thermodynamics. But, as you might protest, “We know what’s inside of
the box! It’s molecules interacting with each other58!” So, we should be able to derive the
structure of thermodynamics from what we already know about equations of motion and the
mathematics we learned in the chapter on probability.

Figure 5.1: A dilute gas rushes to fill the available space after a partition is
removed The gas is composed of microscopic degrees of freedom evolving according to
completely time-reversible dynamics, but “Entropy increases.” What is entropy and how is
it time irreversible for such a process?

In this chapter we will explore the ideas of ensembles of microstates that share the same
macroscopic description – this will be something of a microscopic look at the rules associated
with building a low-dimensional of a physical system that is actually composed of a very
large number of degrees of freedom. We will also spend some time exploring the classical
mechanics of dilute gases. Major questions we want to think about (ref Fig. 5.1):

1. How do we even define the idea of “equilibrium” for a system made out of particles?

2. Do such systems evolve towards equilibrium? How could they?! Every microscopic

58(either classically or quantum mechanically, as the scale of the problem demands)

99
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equation we want to write down is time reversible, but if a system evolves from a
non-equilibrium to an equilibrium state it is picking out a direction of time.

The kinetic theory of fluids was quite important historically, and many textbooks take
it as a foundational component of any core statistical physics course. It not only explains
macroscopic properties of gases in equilibrium (P , T , etc.), but also can be used to under-
stand transport properties (thermal conductivity, viscosity), and the way a system approaches
equilibrium from a non-equilibrium state. It is steadily being de-emphasized in many stan-
dard treatments of statistical mechanics (cf Pathria, or Sethna’s Entropy, Order Parameters,
and Complexity), but I think there is still something compelling about the subject. I have
included sections that use the BBGKY hierarchy to derive the Boltzmann equation, discuss
Boltzmann’s H-theorem, and cover basic hydrodynamics, but these sections are for your
interest only (i.e., I won’t test you on them. But they’re cool).

5.1 Elements of ensemble theory

5.1.1 Phase space of a classical system

We want to connect a thermodynamic description of a system – which is captured by
only a handful of coordinates, like V,N, T, etc. – with a classical microstate. Classical
microstates are specified by the positions and momenta of each of the N particles, µ =
{q1,p1, . . . , qN ,pN}, which is a point in a 6N -dimensional phase space59. Since in this chap-
ter we will be working entirely within a classical framework, we’ll assume the system is
governed by some Hamiltonian, H, and we’ll write down Hamilton’s equations:

dpi
dt

= −∂H
∂qi

= ṗi

dqi
dt

=
∂H
∂pi

= q̇i. (5.1)

Note that time-reversal invariance means that if we reverse the direction of time we transform
p→ −p and q(t)→ q(−t).

Now, given that there are a handful of thermodynamic coordinates describing the system
and ∼ 1023 describing the classical microstate, it will not surprise us that there is a many-
to-one mapping between microstates and equilibrium states. How do we formalize this?
Let’s start by imagining we have N “copies” of the same macrostate of our system, each
corresponding to a different representative microstate, and we’ll think about the ensemble
density function,

ρ(p, q, t) = lim
N→∞,dΓ→0

dN (p, q, t)

NdΓ
, (5.2)

where

dΓ =
N∏
i=1

d3pid
3qi

59Quite hard to draw
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is how we’ll be writing classical phase space volume differentials and dN is the number of
microstates corresponding to the target macrostate in our differential box. Note that if we
integrate ρ over all of phase space we get∫

dΓρ(p, q) =

∫
dN
N

= 1, (5.3)

so we see that between positivity (we’re counting numbers of points, so it’s not negative)
and the above, the ensemble density is actually a probability density function. We already
know things, then, from our work in the last chapter. E.g., to compute expectation values
using this ensemble density we take some operator we’re interested in, A, and do this:

〈A〉 =

∫
dΓρ(p, q, t)A(p, q).

5.1.2 Liouville’s theorem and its consequences

Incompressibility of phase space volumes

Liouville’s theorem, which I’m sure you encountered in classical mechanics, is a characteriza-
tion of the evolution of ρ with time, and basically states that ρ behaves like an incompressible
fluid. So, first, how does the phase space density evolve? Let’s look at Fig. 5.2, which shows
two dimensions of phase space around some representative point pα, qα, as well as where
those points have moved after a short time dt.

Figure 5.2: Evolution of phase space volumes

First, note that the representative point itself flows like

q′α = qα + q̇αdt+O(dt2)
p′α = pα + ṗαdt+O(dt2).

(5.4)

How does the little volume element near this phase space point flow and distort? The points
composing ends of the edge of the volume element may be moving at different velocities –
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that difference depends, e.g., on ∂q̇α
∂qα
dqα (“how fast are the velocities changing along that

direction multiplied by the separation of the points along that edge”), so that

dq′α = dqα + ∂q̇α
∂qα
dqαdt+ · · ·

dp′α = dpα + ∂ṗα
∂pα

dpαdt+ · · · . (5.5)

Thus, for each pair of conjugate coordinates we see that

dq′αdp
′
α = dqαdpα

[
1 + dt(

∂q̇α
∂qα

+
∂ṗα
∂pα

) +O(dt2)

]
= dqαdpα, (5.6)

where the last equality holds because the term proportional to dt vanishes by equality of
mixed partials after using Hamilton’s equation. This is the just the familiar statement that
Hamiltonian dynamics preserves phase space volumes: dΓ = dΓ′.

Liouville’s theorem

The above has consequences for our ensemble density. All of the states dN that were orig-
inally near (p, q) move to the neighborhood of (p′, q′), and we just learned that they also
occupy the same phase space volume. Thus, dN /dΓ is unchanged (“ρ behaves like an incom-
pressible fluid’), and we can write

ρ(p, q, t) = ρ(p′, q′, t+ dt). (5.7)

Expanding out this expression, we can write

ρ(p, q, t) = ρ (p+ ṗdt, q + q̇dt, t+ dt) (5.8)

= ρ(p, q, t) +

[∑
α

ṗα
∂ρ

∂pα
+ q̇α

∂ρ

∂qα
+
∂ρ

∂t

]
dt+O(dt2). (5.9)

That quantity in brackets has the form of something we’ll meet many times. Let’s define
the total derivative (or “streamline derivative60”) of a function f as

d

dt
f(p, q, t) =

∂f

∂t
+
∑
α

∂f

∂pα
ṗα +

∂f

∂qα
q̇α, (5.10)

where the interpretation is that d/dt is the derivative “as you flow” (following the evolution
of the volume of phase space as it itself moves through phase space), whereas the partial
derivative ∂t is like sitting a fixed position in space and watching the changes in f in time
at that location. Anyway, the incompressibility of phase space flow, Eq. 5.7, tells us that the
total time derivative of ρ vanishes. Thus, from Eq. 5.9 ρ says that

dρ

dt
= 0 =

∂ρ

∂t
+
∑
α

(
−∂H
∂qα

)
∂ρ

∂pα
+

(
∂H
∂pα

)
∂ρ

∂qα
(5.11)

⇒ ∂ρ

∂t
= {H, ρ}, (5.12)

60Sometimes also denoted as D
Dt rather than d

dt
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where we have defined the Poisson bracket61

{A,B} =
∑
i

∂A

∂qi

∂B

∂pi
− ∂A

∂pi

∂B

∂qi
(5.13)

5.1.3 Equilibrium ensemble densities

Clean this old text up! Individual microstates will evolve in time (microscopically we certainly
know that if we take snapshots of the state of our system at time t and t+∆t the microstates
will look measurably different!). At the same time, we want our equilibrium macrostates to
not be changing in time, and in particular we want anything we care to measure to not be
changing with time. What does this imply?

Time dependence of observables

First do the direct 〈dA/dt〉, then comeback to this Given an observable A, its total time
derivative is

dA

dt
=

[∑
α

∂A

∂qα
q̇α +

∂A

∂pα
ṗα

]
+
∂A

∂t
. (5.14)

Assuming that A doesn’t explicitly depend on time a la pressure, kinetic energy, etc, we see
that the time dependence of A is just

dA

dt
=

[∑
α

∂A

∂qα

∂H
∂pα
− ∂A

∂pα

∂H
∂pα

]
= {A,H} . (5.15)

Indeed, observables in individual microstates may be evolving in time, but we want their
ensemble average to be stationary in equilibrium.

Thus, ensemble average of the time derivative is just〈
dA

dt

〉
= 〈{A,H}〉 . (5.16)

We can get the same result by taking the time derivative of the ensemble average:

d

dt
〈A〉 =

∫
dΓ
∂ρ(p, q, t)

∂t
A(p, q) (5.17)

=
3N∑
i=1

∫
dΓA(p, q){H, ρ}, (5.18)

where in the first line we have used the Leibniz integral rule to turn the total time derivative
outside the integral sign into a partial derivative inside it. From this expression, one can then

61Using curly braces, and with Pathria’s / Goldstein’s sign convention here instead of Landau’s, though
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write out the Poisson bracket and use integration by parts to take the partial derivatives off
of the ρ. This leads to:

d

dt
〈A〉 =

3N∑
i=1

∫
dΓρ

[(
∂A

∂pi

∂H
∂qi
− ∂A

∂qi

∂H
∂pi

)
+ A

(
∂2H
∂pi∂qi

− ∂2H
∂qi∂pi

)]
(5.19)

= −
∫
dΓρ{H, A} = 〈{A,H}〉 (5.20)

Thus, to get ensemble averages that don’t depend on time, we will look for stationary
ensemble densities, i.e., ones that satisfy

∂ρeq
∂t

= 0. (5.21)

We can combine Liouville’s theorem above with our criteria that in equilibrium ρ is
stationary to come up with a criteria for equilibrium ensemble densities:

∂ρeq(q,p)

∂t
= 0 = {H, ρeq}. (5.22)

In principle, we now have the task of solving the partial differential equation of 6N variables
coming from setting the Poisson bracket to zero. In practice, we’ll guess! We have already
required that in equilibrium ρ has no explicit time derivative; we could also assume it has
no dependence on q or p at all: ρeq = const. is certainly a valid solution of the above
(which is like saying the ensemble of systems corresponding to the equilibrium macrostate
are uniformly distributed through phase space).

More generally, we could come up with more interesting ensemble densities by allowing an
implicit dependence on the phase space coordinates by letting ρ be some arbitrary function
of H, because

{ρeq(H),H} =
∑
i

(
∂ρ

∂H
∂H
∂qi

)
∂H
∂pi
−
(
∂ρ

∂H
∂H
∂pi

)
∂H
∂qi

= 0. (5.23)

Different choices of this function of H lead to different ensembles in statistical physics. For
example, choosing

ρ(H) = δ(H− E),

i.e., equally weighting all microstates that have a particular energy, gives us the microcanon-
ical ensemble. Choosing instead

ρ(H) ∝ exp(−βH(q,p))

gives us the canonical ensemble.
Even more generally, while we’re in the business of simply guessing solutions to Eq. 5.22,

we can assume that ρ is an arbitrary function of bothH itself and of any conserved quantities.
To see why, we first note that if some quantity A is conserved under the Hamiltonian,
{A,H} = 0. Then, using the same sort of manipulations as above, we can write

{ρeq(H, A),H} =
∂ρ

∂H
{H,H}+

∂ρ

∂A
{A,H} = 0, (5.24)

satisfying our condition for ρeq to be an equilibrium distribution.
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5.2 BBGKY62 hierarchy

Pattern matching for the course: how do we start with too much information and create
reduced-dimensional descriptions? ρ definitely has too much info (joint PDF of 6N vari-
ables?), so how do we organize that information more hierarchically?

Starting comments

We are about to embark on a sequence of formal manipulations, so it is worth emphasizing
where we are going today (and why). In the last lecture we addressed the first question posed
at the start of the chapter – “How do we define the idea of equilibrium for a system described
microscopically as a collection of particles?” – by thinking about stationary ensemble density
functions.

The rest of the chapter will be devoted to the second question: if we start from a non-
equilibrium density, can we show it evolves towards equilibrium (a la Fig. 5.1 – an experiment
which we know reproducibly leads from one equilibrium state to another)? Where does time
irreversibility come from?

We have already seen “entropy” defined in two seemingly very different ways: entropy as
a thermodynamic state function somehow related to heat and temperature, and entropy in
the information theoretic sense as a quantification of our ignorance about the output of a
probabilistic source. By the end of the chapter we will see yet another version of entropy:
the Boltzmann version of entropy, capturing information about one-particle densities.

BBGKY

In the last lecture we encountered the ensemble density, ρ(p1, . . . ,pN , . . . , qN , t), but in
general this contains far more microscopic information than we would ever need to compute
or describe equilibrium properties (for instance – knowledge of the typical behavior of just
a single particle would be sufficient to calculate the pressure of a gas. Let’s define the one-
particle density as the expectation value of finding any of the N particles at some particular
location with some particular momentum:

f1(p, q, t) =

〈
N∑
i=1

δ3(p− pi)δ3(q − qi)

〉
= N

∫ N∏
i=2

dViρ(p1 = p, q1 = q,p2, . . . ,pN , qN , t),

(5.25)
where dVi = d3pid

3qi. We are going to be writing integrals over products of dVi quite a lot,
so let’s introduce some compact notation for our measures of integration in phase space.
Let’s use the symbol

dΓba =
b∏
i=a

dVi. (5.26)

Here, dΓN1 is simply what we were calling dΓ in the previous section.

62Bogoliubov-Born-Green-Kirkwood-Yvon. Some aspects of this were introduced by Yvon in 1935; the
actual hierarchy was written out by Bogoliubov in 1945; Kirkwood did relevant work on kinetic transport in
1945/1946; Born and Green used an analogous structure for the kinetic theory of liquids in 1946



106 CHAPTER 5. KINETIC THEORY: FROM LIOUVILLE TO THE H-THEOREM

The general s-particle density is defined similarly, integrating over the s+1 through Nth
variables:

fs(p1, . . . , qs, t) =
N !

(N − s)!
ρs(p1, . . . , qs, t), (5.27)

where

ρs(p1, . . . , qs, t) =

∫
dΓNs+1 ρ(p1, . . . , qN , t) (5.28)

is just the unconditional pdfs for the coordinates of s of the particles. These fs functions
differ from the unconditional pdfs by a simple normalization factor, and we’ll see why each
is vaguely preferable in different situations.

Now, this is a lovely set of definitions. What we really want is a way of expressing the time
evolution of these s-particle densities (e.g., if we can tell the pressure from f1, then knowing
f1(t) will let us study how pressure equilibrates in time as we go from one equilibrium state
to the other; again, c.f. Fig. 5.1). Well,

∂fs
∂t

=
N !

(N − s)!

∫
dΓNs+1

∂ρ

∂t
=

N !

(N − s)!

∫
dΓNs+1 {H, ρ}. (5.29)

It would be quite difficult to make any interesting headway here for a truly arbitrary Hamil-
tonian, so let’s consider the case of up to two-body interactions:

H =
N∑
i=1

[
p2
i

2m
+ U(qi)

]
+

1

2

N∑
i,j=1

V (qi − qj), (5.30)

where U is some external potential and V is some pairwise inter-particle potential. What’s
our strategy going to be? Well, we have to integrate over a Poisson bracket, so integration
by parts will be extremely useful whenever we’re taking a derivative with respect to one of
the variables we’re integrating over. Because of this, let’s partition the sums we have to deal
with into (a) one which covers only the first s particle coordinates, (b) ones which cover only
the last N − s particle coordinates, and (c) ones which couple the first s and the last N − s
particles together:

H = Hs +HN−s +Hx (5.31)

Hs =
s∑
i=1

[
p2
i

2m
+ U(qi)

]
+

1

2

s∑
i,j=1

V (qi − qj) (5.32)

HN−s =
N∑

i=s+1

[
p2
i

2m
+ U(qi)

]
+

1

2

N∑
i,j=s+1

V (qi − qj) (5.33)

Hx =
s∑
i=1

N∑
j=s+1

V (qi − qj). (5.34)

This lets us write63

∂ρs
∂t

=

∫
dΓNs+1 {Hs +HN−s +Hx, ρ}, (5.35)

and we’ll take each part of the Poisson bracket in turn.

63This is just a factor of N !
(N−s) ! different from the equation above – we can always freely trade this factor

back and forth to go from fs to ρs.
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Self term, Hs Notice that the variables we are integrating over do not show up in ρs or
Hs, so we can interchange the order of integrations and differentiations and write∫

dΓNs+1 {Hs, ρ} = {Hs,

(∫
dΓNs+1 ρ

)
} = {Hs, ρs}. (5.36)

This has a natural interpretation / connection to what we already know: if there are only s
particles, we have just re-written the Liouville equation.

Just the non-s particle terms, HN−s First, we write out the Poisson bracket involved:∫
dΓNs+1

N∑
j=1

(
∂ρ

∂pj
· ∂HN−s

∂qj
− ∂ρ

∂qj
· ∂HN−s

∂pj

)
. (5.37)

Well, any of the terms coming from the Poisson bracket with j < s+ 1 vanish because HN−s
doesn’t depend on those particle positions and momenta. All of the rest, though, we notice
that we are integrating over a coordinate which appears as a derivative. We use integration
by parts to pull the derivatives off of the ρ and onto the HN−s

= [surface terms] +

∫
dΓNs+1

N∑
j=s+1

ρ

(
∂2HN−s

∂pi∂qi
− ∂2HN−s

∂qi∂pi

)
= 0. (5.38)

Cross terms, Hx Apparently if there is going to be anything interesting it will come from
these cross terms. We’re making progress, here:∫

dΓNs+1

N∑
j=1

[
∂ρ

∂pj
· ∂Hx

∂qj
− ∂ρ

∂qj
· ∂Hx

∂pj

]
(5.39)

=

∫
dΓNs+1

([
s∑

k=1

∂ρ

∂pk
·

N∑
j=s+1

∂V (qk − qj)
∂qk

]
+

[
N∑

j=s+1

∂ρ

∂pj
·

s∑
k=1

∂V (qj − qk)
∂qj

])
(5.40)

where we have used the fact that Hx is independent of any pi, and then split the first term
depending on whether the derivatives are variables that are integrated over or not. We’ve
indexed things so that the k always refer to one of the first s particles, and the J refer to one
of the last (N − s) particels. We now note that we can integrate by parts again, bringing a
∂
∂~pj

onto the sum over the potential terms in Hx and hence causing it to vanish. Doing this,

and interchanging the order of integration and summing, gives∫
dΓNs+1 {Hx, ρ} =

s∑
k=1

∫
dΓNs+1

∂ρ

∂pk
·

N∑
j=s+1

∂V (qk − qj)
∂qk

(5.41)

Physically, we expect that we can treat all of the j = s+ 1, . . . , N particles equivalently, so
we change the labels of our sums and replace the sum by (N − s) equivalent integrations.
We also separate out the integral over the (s+ 1) particle and the others:∫

dΓNs+1 {Hx, ρ} = (N − s)
s∑

k=1

∫
dVs+1

∂V (qk − qs+1)

∂qk
· ∂

∂pk

(∫
dΓNs+2 ρ

)
. (5.42)
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Notice that the final term in parentheses, above, is just ρs+1. This, at last, is the key con-
nection we wanted to make.

Combining everything: the hierarchy Using either ρs or fs, we have a connection
between different s-body densities:

∂fs
∂t
− {Hs, fs} =

s∑
i=1

∫
dVs+1

∂V (qi − qs+1)

∂qi
· ∂fs+1

∂pi
. (5.43)

This, at last, is the BBGKY Hierarchy! Physically, what have we done? We started with a
very complicated function of O(1023) variables and replaced it with a set (for s = 1, 2, . . . , N)
of O(1023) coupled equations. This may not feel like progress, but a key insight is that this
set of coupled equations forms a hierarchy that isolates the simplest (and presumably most
physically relevant) densities: we have an equation that gives us f1 provided we know f2, and
f2 provided we know f3, and so on. This provides us with a powerful physical tool: given a
particular problem we want to solve, we can inject physical approximations to decide what
terms in this hierarchy can be truncated or simplified or ignored altogether.

For example, in our motivating scenario of the gas whooshing to fill a suddenly-larger
chamber, we’re certainly not interested in the joint probability of all of the particles together;
most physical observables (the pressure of the gas, or the average velocity of the gas flow
through the opening) can be written in terms of just the f1 – this is another example of
our perspective of ultimately aiming for very reduced-dimensionality descriptions of our
microscopic states. Perhaps, then, we could take the BBGKY hierarchy and, for a dilute
gas, imagine that three-body densities (and three-particle collisions) are much less important
than binary collisions. We could attempt to make progress by truncating the whole hierarchy,
keeping only the full equation for the time evolution of f1 and a simplified equation for the
time evolution of f2

64. This is precisely the path that we will follow in Sec. C.1 and 5.3,
allowing us to derive directly in the framework of classical mechanics the existence of an
entropy-like quantity.

5.3 The H-Theorem

If you indulged yourself in the derivation of Appendix C.1 you’ve already seen the Boltzmann
equation:

∂f1

∂t
−{H1, f1} =

=

∫
d3p2d

3p′1d
3p′2ω(p′1,p

′
2|p,p2) [f1(q,p′1)f1(q,p′2)− f1(q,p)f1(q,p2)] , (5.44)

64Leaving us with a still-daunting but now at least approachable set of coupled equations to solve
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where the scattering function ω(p,p2|p′1,p′2) keeps track of the details of the particle-
particle collision process (and hence which is sensitive to all of the microscopic details of the
system); using this function we can write the rate at which collision processes happen as

rate = ω(p,p2|p′1,p′2)f2(q1 = q, q2 = q,p1 = p,p2, t)d
3p2d

3p′1d
3p′2. (5.45)

That is, the rate is proportional to the details of the scattering process times f2, which itself
gives us the probability of of having particles with (q,p) and (q,p2) in the first place.

Shoemakers and tailors65, indeed. The Boltzmann equation combines derivatives and in-
tegrals and complicated nonlinearities; exact solutions to it are not so easy to come by. But
using it we will ultimately be able to show that systems actually do reach equilibrium if they
start out of it. We have been dancing around the question of how is it that thermodynamics
tells us that systems will eventually settle into equilibrium states – which involves an arrow
of time that distinguishes past from future – even though the equations of motion are fun-
damentally invariant under the reversal of time. Specifically, we’ll first show that within the
framework of the Boltzmann equation, entropy does indeed increase and systems do indeed
equilibrate (this section and the next section, respectively).

This first accomplishment will come via the famous H-Theorem66 To state the theorem,
let’s first define a (possibly) time-dependent quantity, H(t), as

H(t) =

∫
d3qd3p f1(q,p, t) log (f1(q,p, t)) . (5.46)

For those with a short memory this this might seems like an odd-looking choice; fortu-
nately we encountered similar constructions in Chapter 4 and so suspect that it is actually
a surprisingly natural object to consider. Up to a factor of normalization f1 is a probability
density function and we will recognize H as something like 〈log f1〉 – intimately related to
the Shannon entropy associated with a the probability function67. The H-Theorem is just:

H-Theorem: If f1 satisfies the Boltzmann equation, then

dH

dt
≤ 0. (5.47)

We have added the frame around this remarkable theorem because it was a stunning early
success in showing the power of statistical thinking in understanding thermodynamics, here
as an attempted derivation of the second law. These increasingly probabilistic interpreta-
tions of thermodynamics eventually led to Gibbs’ ensemble interpretations for the statistical
mechanics of general systems.

65cf. the quote in Fig. C.1
66Historical oddity: I can’t figure out if this “H” is a capital roman character or the capital Greek Eta,

“H,” which in handwriting and all typesetting I know of looks identical. Boltzmann first used E for entropy,
and later switched to H. So, probably Eta.

67Boltzmann’s ideas on deriving entropy-like functions from physical laws enormously influenced Shan-
non’s work.
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Proof of the H-Theorem: We take the time derivative in the same way we took the
time derivative of ensemble average quantities earlier in the chapter: H only has a time
dependence through explicit time-dependences:

dH

dt
=

∫
d3qd3p (log f1 + 1)

∂f1

∂t
=

∫
d3qd3p log f1

∂f1

∂t
, (5.48)

where we exploited the fact that
∫
d3rd3pf1 = N is independent of time, so

∫
∂tf1 = 0. Using

the fact that f1 satisfies the Boltzmann equation, we can write the above as

dH

dt
=

∫
d3qd3p log f1

(
∂U

∂q1

· ∂f1

∂p1

− p1

m
· ∂f1

∂q1

+

(
∂f1

∂t

)
coll

)
. (5.49)

Actually, though, the first two terms in the Eq. 5.49 vanish: to see this we integrate by
parts twice, first moving the derivative from f1 onto the log f1 term, and then from the log f1

term back onto the f1. Thus, the time evolution of H is entirely governed by the collision
terms:

dH

dt
=

∫
d3qd3p log f1

(
∂f1

∂t

)
coll

(5.50)

=

∫
d3qd3p1d

3p2d
3p′1d

3p′2ω (p′1,p
′
2|p1,p2) log f1(p1) [f1(p′1)f1(p′2)− f1(p1)f1(p2)] ,

where in this expression I’ve suppressed all of the q and t arguments, and I’ve named the
dummy variable we’re integrating over p1.

To make progress, we play with the dummy indices. First, let’s relabel 1↔ 2, which only
changes the argument of the log. Adding the resulting (equivalent) expression and averaging
it with the original expression gives a more symmetric expression:

dH

dt
=

1

2

∫
d3qd3p1d

3p2d
3p′1d

3p′2ω (p′1,p
′
2|p1,p2) log [f1(p1)f1(p2)] [f1(p′1)f1(p′2)− f1(p1)f1(p2)] .

(5.51)
We can play the same trick with the incoming and outgoing momenta, swapping p ↔ p′,
while simultaneously making use of the symmetry properties of the scattering processes68.
This gives us

dH

dt
=
−1

2

∫
d3qd3p1d

3p2d
3p′1d

3p′2ω (p′1,p
′
2|p1,p2) log [f1(p′1)f1(p′2)] [f1(p′1)f1(p′2)− f1(p1)f1(p2)] .

(5.52)
Finally, we average the above two numbered equations to get

dH

dt
=
−1

4

∫
d3qd3p1d

3p2d
3p′1d

3p′2ω (p′1,p
′
2|p1,p2)

× [log [f1(p′1)f1(p′2)]− log [f1(p1)f1(p2)]] [f1(p′1)f1(p′2)− f1(p1)f1(p2)] .(5.53)

At this point you may be wondering what exactly we’re driving at with this sequence
of manipulations (i.e., averaging different versions of the same expression to get something

68
∫
d3p′1d

3p′2ω(p′1, p
′
2|p1, p2) =

∫
d3p′1d

3p′2ω(p1, p2|p′1, p′2)
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symmetric-looking), but we’re actually done! Let’s think about the terms in the integral.
First, the scattering rate, ω, is definitionally a positive quantity. Second, the terms involving
f1 have been manipulated into the form

(log a− log b) (a− b) ,

which is positive as long as a and b are themselves positive – which they are here, since f1

has the property of positivity! Thus,

dH

dt
≤ 0 ⇔ dS

dt
≥ 0

A few comments are in order:

1. The arrow of time, again, emerges from the assumption of molecular chaos. If we had
decided that the rate of scattering was proportional to f2 after the collision instead
of before, and still kept f2 ∼ f1f1, we would have found dH

dt
≥ 0, suggesting entropy

decreases as we move into the future. Clearly some real subtleties are in the assumptions
we made!

2. Note also that the H-theorem permits the time derivative of H to vanish (i.e., it’s not a
strict inequality). One of the homework problems deals with distributions that satisfy
a notion of “local equilibrium” by satisfying a condition of detailed balance, making dH

dt

vanish by virtue of:

f1(p′1)f1(p′2) = f1(p1)f1(p2).

These distributions are not quite in equilibrium, as they do not satisfy the streaming
terms, but they do make the collision terms vanish. These systems have things like
densities, temperatures, drift velocities, etc., varying over space. We’ll learn more about
this in the next section.

5.4 Introduction to hydrodynamics

The equilibrium properties of a macroscopic system are governed by thermodynamics, but we
said at the outset of this chapter that we also care about, e.g., the common situation shown
in Fig. 5.1. What happens if you start we an equilibrium system and perturb it (perhaps
in a large way, as by suddenly and radically expanding the volume available for a gas)?
Hydrodynamics provides a systematic way to think about characteristically long-wavelength,
low-energy excitations of a system. Phenomenologically, one can write down hydrodynamic
equations based on the symmetries of a system, but here (in the context of the Boltzmann
equation) we’ll see that you can also explicitly derive hydrodynamic descriptions by starting
with the microscopic dynamics of a system.

To motivate a bit of what follows, let us think about the equilibrium condition in the
context of the Boltzmann equation, dH

dt
= 0. This sets up the following tension69: One way

69which we will resolve in this section
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to satisfy this condition is to satisfy the constraints of local equilibrium, writing a candidate
one-body distribution which takes the form

f(p, r) = exp

(
−α(r)− β(r)

(p− π(r))2

2m

)
, (5.54)

where α, β, and π are functions of the spatial coordinates. A distribution of this form sets the
time-derivative of H to zero, but it does not satisfy Boltzmann’s equation itself! We saw quite
generically when discussing the Liouville equation that the left hand side of the Boltzmann
equation, even if there is no explicit time dependence, requires the Poisson bracket of the
one-particle distribution and the one-particle Hamiltonian to vanish, {H1, f1} = 0; given the
set of conserved quantities this tells us that in global equilibrium f1 should just be a function
of H1:

f(p, r) ∝ exp

(
β

(
p2

2m
+ U(r)

))
. (5.55)

These, in general, are not the same. The key is that the Boltzmann equation is built on a
separation of time scales that we can physically interpret. At the fastest, collisional time
scale, we approximate f2 ∼ f1f1, where there are correlations in these quantities. On time
scales related to the mean time between collisions, τx, f1 relaxes to a local equilibrium form,
and quantities that are conserved in collisions reach this state of local equilibrium. Finally,
there is a subsequent slow relaxation to the global equilibrium state, governed not by the
collision terms or intergrals over the collision terms, but by the streaming terms on the LHS
of the Boltzmann equation.

5.4.1 Collision-conserved quantities

Let’s think about a function over the single-particle phase space, A(r,p) – this could be
density, or kinetic energy, or... but importantly, we are thinking of quantities that do not
have explicit time-dependences. Now, we want to think about the typical way that A varies
with space, so we will integrate over momentum70 So, let’s define averages of A as

〈A(r, t)〉 =

∫
d3pA(r,p)f1(r,p, t)∫

d3pf1(r,p, t)
.

Note that the denominator of the above expression is just a local number density of particles,

n(r, t) =

∫
d3pf1(r,p, t), (5.56)

so

〈A(r, t)〉 =
1

n(r, t)

∫
d3pA(r,p)f1(r,p, t) (5.57)

70This could be motivated by saying it is more common to experimentally measure spatial dependence
than momentum dependence in the kind of systems we’re studying, but I would rather say something like
the following: When we started with the Liouville equation there was complete symmetry between p and q,
but in the derivation of the Boltzmann equation we started treating the two inequivalently. To emphasize
the fact that p and q are no longer on the same footing, in this section I’m using the variable r instead of q
to represent position.
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Importantly, the time-dependence of these average quantities only come through the fact
that f1 can evolve in time.

We’re not going to be interested in arbitrary choices of A: ultimately we want to think
about the kind of slowly-varying quantities that are relevant as we are approaching equilib-
rium, and we know from our discussion above that typically terms involved in the collision
integral will vary over a fast time scale. So, we want quantities A that will vanish when
integrated against the collision part of the Boltzmann equation. I.e., we want A’s that have
the property ∫

d3pA(r,p)

(
∂f1

∂t

)
coll

= 0.

We can insert the expression for the collision term and go through precisely the same kind
of manipulations we did in Sec. 5.3 to find that the A’s that have this property obey

A(r,p1) + A(r,p2) = A(r,p′1) + A(r,p′2). (5.58)

That is, they are properties that are conserved in the course of a collision.

Time evolution of collision-conserved quantities: Before we investigate the particular
A’s of interest, let’s write down the general way that A changes with time if f1 satisfies the
Boltzmann equation. To do this, we start with the Boltzmann equation, which we will from
now on occasionally write as

Lf1 = C[f1, f1], (5.59)

where L = ∂t + pα
m
∂α +Fα∂pα and C[f1, f1] =

(
∂f1
∂t

)
coll

. Let’s multiply by a collision-invariant
A(r,p) and integrate both sides

∫
d3p. The RHS will vanish (by definition of how we’re

choosing the A), leaving us with∫
d3p A(r,p)

(
∂

∂t
+
pα
m
∂α + Fα∂pα

)
f1(r,p, t) = 0, (5.60)

where F is the external force, F = −∇U (and the rest of the notation should be clear...
i.e. with the summation convention p

m
· ∂
∂r

= pα
m
∂α). We can simplify this expression (for

instance by integrating the term involving the external potential by parts) and various simple
manipulations. Making use of how we defined the angle brackets here to be averages over
momenta, we can write the above expression as71

∂

∂t
〈nA〉+

∂

∂r
· 〈nvA〉 − n

〈
v · ∂A

∂r

〉
− n

〈
F · ∂A

∂p

〉
= 0. (5.61)

This general equation becomes quite powerful when we start replacing the generic A with
specific collision-conserved quantities, as we’ll now see.

Specific collision-conserved quantities

Let’s apply this general expression to quantities which we know are conserved in a collision.

71suppressing dependencies, and with v = p/m
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Particle number The most trivial thing conserved in a collision between particles is
simply the number of particles !. If we insert the choice A = 1 into Eq. 5.61, we simply get

∂tn+ ∂α(nua) = 0. (5.62)

This result is often written using the particle current, J(r, t) = n(r, t)u(r, t). It is the
continuity equation, expressing the fact that if particle number is conserved, variations in
local particle density are related to particle currents. Note that we have introduced a new
quantity, u = 〈v〉

Momentum Linear functions of the momentum are also conserved during collisions, and
it is convenient to look not at A = p, but rather at the momentum relative to the mean
local velocity we just defined. Choosing A = c ≡ p/m−u, substituting it into Eq. 5.61, and
exploiting the fact that we defined things so that 〈cα〉 = 0, we find

∂tuα + uβ∂βuα =
Fα
m
− 1

mn
∂βPαβ, (5.63)

where the pressure tensor for the fluid is

Pαβ ≡ mn 〈cαcβ〉 . (5.64)

This expression is like a generalized Newton’s law, telling us that the fluid elements experi-
ence accelerations that come both from the external forces and also gradients in the pressure
tensor.

Kinetic energy Finally, we look at the kinetic energy of the particles as our last collision-
conserved quantity. As before, it is slightly easier to work with the relative kinetic energy,
A = m

2
(v−u)2 = m

2
c2. We substitute this into Eq. 5.61, and go through some simplifications

to find

∂tε+ uα∂αε = − 1

n
∂αhα −

1

n
Pαβuαβ, (5.65)

where I have just introduced the average local kinetic energy :

ε ≡
〈
mc2

2

〉
,

the local heat flux :

hα ≡
nm

2

〈
cαc

2
〉
,

and the strain rate tensor :

uαβ =
1

2
(∂αuβ + ∂βuα) .

Equations 5.62, 5.63, and 5.65 form a set of coupled equations for the time evolution of
the particle density n the local average velocity u, and the local average kinetic energy ε
(which is itself going to be related to the temperature!). But the equations are not closed,
as to calculate those three quantities we would need expressions for the pressure tensor and
the heat flux. We next show how we can build up approximations, using the Boltzmann
equation, for these two quantities to finally get a simple, hydrodynamic description of how
systems approach equilibrium.
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5.4.2 Zeroth-order hydrodynamics

Let’s make progress by straight-up guessing a functional form for the one-body distribution
function f1. Our logic in making this guess is that we know the collision term will induce
fast relaxations, so if we want a distribution function which only varies slowly, a good place
to start would be with a distribution function that satisfies C[f1, f1] = 0. Let’s take one such
solution which we already met in Eq. 5.54; getting the normalization correct and introducing
a new variable that we’ll suspiciously label T , we’ll take our zeroth-order guess, denoted f 0

1 ,
to be

f 0
1 (p, r, t) =

n(r, t)

(2πmkBT (r, t))3/2
exp

[
−(p−mu(r, t))2

2mkBT (r, t)

]
(5.66)

This Gaussian form is clearly normalized so that, e.g.,
∫
d3pf 0

1 = n, 〈p/m〉0 = u, and

〈cαcβ〉0 = kBT
m
δαβ. This lets us calculate the approximations for the pressure tensor, energy

density, and heat flux:

P 0
αβ = nkBTδαβ, ε =

3

2
kBT, h0 = 0.

The equations we derived by thinking about collision conserved quantities are very simple
in this approximation. Defining the material derivative

Dt ≡ ∂t + uβ∂β

we get:

Dtn = −n∂αuα
mDtuα = Fα −

1

n
∂α(nkBT )

DtT = −2

3
T∂αuα. (5.67)

The inadequacy of zeroth-order hydrodynamics: Sadly, these very simple equations
do a terrible job of describing the relaxation of a system to equilibrium. Let’s imagine starting
with a system with initial u0 = 0 in the absence of external forces F = 0, and making a
small perturbation:

n(r, t) = n̄+ δn(r, t), T (r, t) = T̄ + δT (r, t). (5.68)

We want to study what happens to these small perturbations, so we expand Eqs. 5.67 to
first order in (δn, δT,u), where we note that to first order the material derivative is just
Dt = ∂t +O(u), so our linearized zeroth order equations become:

∂tδn = −n̄∂αuα

m∂tuα = −kBT̄
n̄

∂αδn− kB∂αδT

∂tδT = −2

3
T̄ ∂αuα. (5.69)
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The easiest way to investigate the effect of our perturbations is to take Fourier transforms,

Ã(k, ω) =

∫
d3qdt A(r, t) exp [i(k · r − ωt)] ,

where A is any of (δn, δT,u). This gives us the matrix equation

ω

 δ̃n
ũα
δ̃T

 =

 0 n̄kβ 0
kB T̄
mn̄

δαβkβ 0 kB
m
δαβkβ

0 2
3
T̄ kβ 0

 δ̃n
ũβ
δ̃T

 . (5.70)

This matrix has the following modes: There are two modes describing a transverse shear flow
in a uniform and isothermal gas (n = n̄, T = T̄ ), with the velocity field varying transverse
to its orientation, e.g. u = f(x, t)ŷ, and both have ω = 0. There is another ω = 0 mode
describing a gas with uniform pressure nkBT , where n and T may be spatially varying but
with a constant product. Lastly, there is a mode with variations along the direction of k;
the eigenvector looks like:

vlongitudinal =

 n̄|k|
ω(k)
2
3
T̄ |k|

 , ω(k) = ±
√

5kBT̄

3m
|k|.

Well, shoot. Apparently within this approximation none of our conserved quantities relax
to equilibrium if we apply a little perturbation: shear flow persists forever, sound modes have
undamped oscillations, etc.

5.4.3 First-order hydrodynamics

Perhaps this should not have surprised us: we picked something that satisfied local equilib-
rium, but it is straightforward to check that Lf 0

1 6= 0. Actually, it’s more straightforward to
show that if n, T, uα satisfy the zeroth-order hydrodynamic equations, then the effect of L
on the log of the zeroth-order approximation for f1 is

L
[
ln f 0

1

]
=

m

kBT

(
cαcβ −

δαβ
3
c2

)
uαβ +

(
mc2

2kBT
− 5

2

)
cα
T
∂αT. (5.71)

Our instinct for moving forward is to note that, although the RHS of the above is not
zero, it depends on gradients of temperature and on the local velocity. In a sense, then, if we
stick to long-wavelength variations in T and u we are “close” to a solution. Thus, we will try
to construct first-order hydrodynamics by adding a little something extra to the distribution:

f 1
1 = f 0

1 + δf1. (5.72)

Relaxation time approximation What happens if we act on f 1
1 with our collision op-

erator?

C[f 1
1 , f

1
1 ] =

∫
d3p2d

3p′1d
3p′2ω(p′1,p

′
2|p1,p2) [f1(p′1)f1(p′2)− f1(p1)f1(p2)] (5.73)

=

∫
d3p2d

3p′1d
3p′2ω(p′1,p

′
2|p1,p2)

[
f 0

1 (p′1)δf1(p′2) + δf1(p′1)f 0
1 (p′2)− f 0

1 (p1)δf1(p2)− δf1(p1)f 0
1 (p2)

]
,
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where we have used the fact that f 0
1 vanishes in the collision integral and dropped any terms

of order (δf1)2. We now have a linear function of δf1, albeit a messy one to work with. At
this point there is a proper way to proceed72, and a physically just fine way to proceed,
which has the great virtue of being much easier while still capturing the dissipational piece
that was missing from our zeroth-order description. We simply approximate

C[f 1
1 , f

1
1 ] ≈ −δf1

τx
, (5.74)

which is called the relaxation time approximation or the single collision time approximation
or using the BGK operator 73. With this approximation the Boltzmann equation is

∂f 0
1 + δf1

∂t
− {H1, f

0
1 + δf1} =

−δf1

τx
, (5.75)

but we assume that δf1 � f 0
1 , so we ignore the δf1 on the LHS. We can then explicitly work

out the additional contribution to our improved estimate:

δf1 = −τx
[(

mc2

2kBT
− 5

2

)
c

T
· ∂T
∂r

+
m

kBT

(
cαcβ −

δαβ
3
c2

)
uαβ

]
f 0

1 . (5.76)

One can use this improved description to calculate corrections to various quantities. For
example, the first-order estimate of the pressure tensor becomes

P 1
αβ = nkBTδαβ − 2nkBTτx

(
uαβ −

δαβ
3
uγγ

)
, (5.77)

and the heat flux acquires a dependence on spatial gradients in the temperature. These are
important: they say that shear flows get opposed by off-diagonal terms in the pressure tensor,
and that spatial variations in temperature generate heat flows that in turn smooth out those
variations! These are the sorts of effects that cause the relaxation to equilibrium.

In case you’re curious, if I’ve TEX’ed this correctly the matrix equation corresponding to
the first-order hydrodynamic equations after a Fourier transformation look like

ω

 δ̃n
ũα
δ̃T

 =

 0 n̄δαβkβ 0
kB T̄
mn̄

δαβkβ −i µ
mn̄

(
k2δαβ +

kαkβ
3

)
kB
m
δαβkβ

0 2
3
T̄ δαβkβ −i2Kk2

3kB n̄


 δ̃n

ũβ
δ̃T

 , (5.78)

where K = (5n̄k2
BT̄ τx)/(2m) and µ = n̄kBT̄ τx is a viscosity coefficient. The important point

of writing this is the ability to verify that now all of the modes have an imaginary component
(either they are strictly imaginary eigenvalues (for variations in pressure and for transverse
shear modes) or complex ones (for longitudinal sound modes), so that we know that over long
time scales perturbations to the gas die away, and the gas eventually reaches its equilibrium
state.

72The Chapman-Enskog expansion, doing a careful expansion in δf1
73Bhatnagar-Gross-Krook, [42]
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5.5 Problems

5.5.1 Detailed balance

Let’s consider functions which satisfy the Boltzmann equation, and for simplicity let’s assume
that the external potential U(q) = 0. As we saw in class, one way to make the collision
integral vanish is by ensuring that f1 satisfies the detailed balance condition:

f eq1 (r,p′1)f eq1 (r,p′2) = f eq1 (r,p1)f eq1 (r,p2),

where the challenge is to figure out how to guarantee this equality for all momenta.

The Boltzmann distribution:

By taking the log of the detailed balance condition, argue based on your knowl-
edge of conserved quantities during collisions that f eq1 takes the form of the
Maxwell-Boltzmann distribution. (i.e., interestingly, having the collision term in
the Liouville equation makes the f1 sit in the Boltzmann distribution at equilib-
rium.).

5.5.2 Momentum moments

Let’s consider a gas of N particles of mass m, in thermal equilibrium at temperature T in a
box of volume V .

(a) Write down the appropriate equilibrium one-particle density, feq(q,p)

(b) What is the joint characteristic function, 〈exp (−ik · p)〉?

(c) Calculate the joint cumulants,
〈
plxp

m
y p

n
z

〉
c
, for any integers l,m, n.

(d) Calculate the joint moment, 〈pαpβp · p〉, for any choice of cartesian
directions α, β (hint: the answer is given in the next question... just
show me how to get there).

5.5.3 Local equilibrium

If we ignore the “streaming term” {H1, f1} then there is a much larger class of distributions
that satisfy detailed balance, and they are said to be in local equilibrium; they take the form
of a distribution with a Boltzmann distribution, but where the number density, temperature,
and velocity all become functions of the spatial coordinates74.

74Take, for instance, a glass of water with a ice cube melting in it. This is clearly not an equilibrium
state, but if you look at the distribution of velocities of water molecules as a function of distance from the
ice cube, you will find to a good approximation that at every point in space and at any moment in time the
distribution is close to Maxwell-Boltzmann
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Let’s use the Boltzmann formalism to calculate the thermal conductivity of a dilute gas.
Suppose we have such a gas between two plates, which are a distance h apart. The first
plate (at z = 0) is fixed at temperature T1, and the second plate (at z = h) is fixed at
temperature T2. There is no net drift velocity of the gas (i.e., there are no net flows), and so
our zeroth-order approximation for the one-particle density is

f 0
1 (p, x, y, z) =

n(z)

(2πmkBT (z))3/2
exp

[
− p · p

2mkBT (z)

]
,

where the superscript 0 indicates that this is the zeroth-order approximation.

Local pressure

If the gas initially has no drift velocity, what is needed for a relationship between
n(z) and T (z) to ensure that the gas velocity remains zero? You will need this
relationship in later parts.

First order approximation

The zeroth-order approximation we started with does not allow for the relaxation
of density and temperature variations. Let’s linearize the Boltzmann equation in
the single-collision-time approximation as

L[f ] ≈
[
∂

∂t
+
pz
m

∂

∂z

]
f 0

1 ≈ −
f 1

1 − f 0
1

τK
,

where τK is again of the order of the typical time between collisions. What is
your improved approximation for f 1

1 , the first-order approximate solution to the
Boltzmann equation (assuming it is independent of time)?

Heat transfer

What is the z-component of the heat transfer vector, hz, defined as

hz = n

〈
cz
mc2

2

〉
,

where c = p/m−u? Give the answer using both the zeroth order approximation,
f 0

1 , and using the first order approximation you derived, f 1
1 . It may help you to

know that〈
p2
〉0

= 3mkBT,
〈
p4
〉0

= 15(mkBT )2,
〈
p2
zp

4
〉0

= 35(mkBT )3,

where 〈A〉0 means the local average using f 0
1 . Your answer should include a spatial

derivative of the temperature.
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Thermal conductivity and temperature profile

From the connection between thermal conductivity and temperature gradient,
h = −K∇T , and your answer above, what is your first-order approximation for
the thermal conductivity of a dilute gas? What is the temperature profile in the
steady state, T (z)?

5.5.4 BBGKY for a plasma

Anatoly Vlasov wanted to understand plasmas consisting of charged particles that had long-
ranged (Coulomb) interactions, and the usual Boltzmann approach based on pair collisions
seemed problematic75. Let’s make use of the BBGKY hierarchy to derive one of Vlasov’s
celebrated equations.

(a) Start by assuming that the full N -body density is just a product of the 1-body
densities (ρ =

∏N
i=1 ρ1(pi, qi, t)) Write down the definition of fs, and calculate its

normalization in the limit s� N .

(b) Assume, like Vlasov did, that the problem comes from the collisional terms
in the BBGKY hierarchy, i.e., the terms that are like ∂Φ

∂q
· ∂
∂p

. Write down a

version of the BBGKY hierarchy (which you can write as an equation for the
time evolution of fs) in which all of the collisional terms are set to zero. Assume
you are looking at a level of the hierarchy s� N to make any simplifications to
your expression. You’ve derived the Vlasov equation!

(c) Finally, consider a box of N particles, with no additional external potential.
Show that

f1(q,p) =
1

V
g(p)

is a stationary solution to the Vlasov equation (that is: you can take any function
of only the momenta of the particle, and it will be a stationary solution). Said an-
other way: momentum fluctuations never relax to equilibrium in this framework.
Why don’t they?

75Among other things, the long-ranged nature of the interaction potential led to divergences in some of
the kinetic terms



Chapter 6

Classical Statistical Mechanics

Statistical mechanics is connected with the phenomenological, “thermodynamical” view of
macroscopic properties we saw in the first part of this course via a probabilistic description
of large numbers of degrees of freedom. In this chapter we will focus not on microscopic
theories for which we can study both equilibrium and approach-to-equilibrium dynamics
as in Chapter 2, but rather on attempting to provide probability distributions that connect
microstates to macrostates. We will use the idea of unbiased estimates of probability to assign
these probability distributions for different equilibrium ensembles, and use the mathematics
of the large-N limit to show that the ensembles are equivalent in the thermodynamic limit.

6.1 The microcanonical ensemble and the laws of ther-

modynamics

We begin, just as we did in the chapter on Thermodynamics, with a simplified version of our
system of interest, taking an adiabatically isolated state. In the absence of adding heat or
work to the system, the macrostate M is specified completely by the internal energy E, the
set of generalized coordinates x, and the number of particles N : M(E,x, N). In the absence
of any other information, or any knowledge of other conserved quantities, we say that at a
minimum the Hamiltonian evolution equations conserve the total energy of the system, so
that the evaluation of the Hamiltonian on a microstate µ is H(µ) = E.

The central postulate of statistical mechanics is that the equilibrium probability
distribution is

p(E,x,N)(µ) =
1

Ω(E,x, N)
·
{

1 if H(µ) = E
0 otherwise

(6.1)

This is often called “the assumption of equal a priori probabilities,” and we see that it is
the same as the unbiased estimate of probability given only a constraint of constant energy
E. Certainly we saw that this is one of the allowed assignments consistent with Liouville’s
theorem, although it is not the only one! Given our work in the chapter on Probability we
might not be surprised by this assignment, but it is nevertheless a deep assumption.

121
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There is a potential subtlety in defining the normalization factor76 Ω here: as written, in
order to make p a properly normalized probability density function (so that it integrates to
unity), we want Ω to be the area of the relevant surface of fixed energy E over the microscopic
phase space. You might be worried about defining probability densities that are non-zero only
on a surface, and so we sometimes define a microstate in the microcanonical ensemble to be
within ∆ of the specified energy: E − 1

2
∆ ≤ H(µ) ≤ E + 1

2
∆. The normalization Ω′ is now

the volume of a shell rather than the area of a surface, and Ω′ ≈ Ω∆. We will see that, since
Ω is typically exponentially large in E, which is itself typically proportional to N , that the
difference between the surface area and the shell volume is negligible, so we’ll go back and
forth between Ω and Ω′ freely.

We define the entropy of the uniform probability distribution exactly as you by now
expect:

S(E,x, N) = kB ln Ω(E,x, N), (6.2)

where we have introduce a factor called “kB” so that entropy has units of energy divided by
temperature. Note, by the way, that we know from Liouville that under canonical transforma-
tions volumes in phase space are invariant, and for the transformed probability distribution
stays uniform on the transformed phase-space surface of constant energy. This tells us that
both Ω and S are invariant under canonical coordinate changes.

To highlight the interconnections with the beginning of this class, we now show that
Eq. 6.1 can be used to derive the laws of thermodynamics (with the exception of Nernst’s
theorem, which as we hinted at the time requires quantum mechanics).

6.1.1 0th Law

Let’s think about bringing two previously isolated microcanonical systems, which originally
had energies E1 and E2, into contact in a way that lets them exchange heat, but not work.
Certainly the combined system has energy E = E1 + E2, and we assume (by assuming that
the interactions between the systems are small) that the microstate of the combined system
corresponds to a pair of microstates of the components. We’ll write this as µ = µ1 ⊗ µ2,
assuming H(µ) = H1(µ1) +H2(µ2). We thus write the fundamental postulate, Eq. 6.1 as

pE(µ) =
1

Ω(E)
·
{

1 if H1(µ1) +H2(µ2) = E
0 otherwise

. (6.3)

We have a fixed total energy, so we can compute the normalization factor as

Ω(E) =

∫
dE1 Ω1(E1)Ω2(E − E1) =

∫
dE1 exp

[
S1(E1) + S2(E2)

kB

]
. (6.4)

We have written the normalization factor for our probability this way to make contact
with our “sums and integrals of exponentials” discussion in a previous chapter! We think (and
will see later) that entropy is extensive, so that S1 and S2 are proportional to the number

76“We must learn how to count the number of states it is possible for a system to have or, more precisely,
how to avoid having to count that number” – David Goodstein [43]
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of particles in the system. We use the simple (i.e., non-complex) saddle-point method to
approximate the integral by the maximum of the integrand, giving us

S(E) = kB ln Ω(E) ≈ S1(E∗1) + S2(E∗2), (6.5)

where the starred quantities are the values that maximize the value of the integrand. We
can calculate this values of setting the first derivative (w/r/t E1) of the exponent above to
zero, which gives us:

∂S1

∂E1

∣∣∣∣
x1,N1

=
∂S2

∂E2

∣∣∣∣
x2,N2

. (6.6)

In words, there are many joint microstates which sum to a total energy of E, but there are
exponentially more microstates sitting near (E∗1 , E

∗
2), and so the system eventually flows

from (E1, E2) to (E∗1 , E
∗
2). We get no information about the time dynamics of this process;

just the end result, which is a place where Eq. 6.6 is satisfied.
Also... ah ha!! We have found a condition satisfied by two systems that come into equi-

librium with each other: the have equal partial derivatives of entropy with respect to energy
(holding everything else fixed)! To be consistent with what we had from phenomenological
thermodynamics, we’ll choose a particular name for the state function corresponding to this
condition:

∂S

∂E

∣∣∣∣
x

=
1

T
. (6.7)

6.1.2 1st Law

Let’s now bring together two previously isolated microcanonical systems and separate them
by an insulated partition that lets them exchange generalized displacements – and thus do
work on each other – but that does not permit direct heat exchange (For instance, think
of an insulated partition between two gases that can slide back and forth). We let the two
systems equilibrate, and then ask what happens to the entropy of the first system when there
is a a spontaneous fluctuation by some amountfor the remainder of this section I’m going
to be TEX-lazy and stop distinguishing mechanical work from chemical work.... it’s all just
x now. by δx. This fluctuation both changes the extensive variablex and does work on the
system d̄W = J · δx; since the system is otherwise isolated its internal energy changes to
E + d̄W . To first order, the entropy S(E,x) of the system varies by

δS = S(E + J · δx,x+ δx)− S(E,x) =

(
∂S

∂E

∣∣∣∣
x

J +
∂S

∂x

∣∣∣∣
E

)
· δx. (6.8)

Now, what does it mean to be in equilibrium? Even though all consistent microstates are
equally probable, we expect (analogous to the arguments above) that there are exponentially
many more consistent states sitting near the extrema of the entropy function.

So, we expect that when we let the systems equilibrate then the first system it is at a
value of E and x We expect that the counting factor.... double check argument in my lecture
notes

We say we have an equilibrium state at some value of E and some set of generalized
displacements x, and we have said that all consistent microstates are equally probable. Well,



124 CHAPTER 6. CLASSICAL STATISTICAL MECHANICS

the above equation says that spontaneous changes in the system will occur, taking us into
more likely states, unless the terms in the parentheses vanish! Thus, a condition to be in
equilibrium is that

∂S

∂xi

∣∣∣∣
E,xj 6=i

= −Ji
T
, (6.9)

where we have used the relationship between temperature and ∂S/∂E from the zeroth law.
With this constraint on the variations, we get that in general

dS(E,x) =
∂S

∂E
dE +

∂S

∂x
dx =

dE

T
− J · dx

T
⇒ dE = TdS + J · dx. (6.10)

Wow – it’s the first law! And where we’ve, of course, identified d̄Q = TdS.

6.1.3 2nd Law

The second law77 is almost obvious, almost by construction, given what we have set up so
far. Indeed, you already know from the section of unbiased estimates that we are assigning
probabilities in a way that maximizes the entropy subject to the constraint on the energy.
For instance, consider our example from the zeroth law of bringing two equilibrium states
at E1 and E2 into contact. Well, clearly

S(E) ≡ kB ln Ω(E1 + E2) ≥ S1(E1) + S2(E2),

which must be true since the two states of the original system are a subset of the possible
combined joint microstates.

Note that we can make additional mathematical statements by considering variations of
entropy. When two systems are first brought into contact but have not yet reached equilib-
rium, the equality in Eq. 6.6 does not yet hold. Instead we have

δS =

(
∂S1

∂E1

∣∣∣∣
x1

− ∂S2

∂E2

∣∣∣∣
x2

)
δE1 =

(
1

T1

− 1

T2

)
δE1 ≥ 0. (6.11)

Thus we recover Clausius’ statement of the second law: we know the variations in S are
positive as we move towards a new equilibirum state, and we see that heat flows from the
hotter to the colder system.

Note that, in principle, these are all probabilistic statements: it is merely much more
likely that a combined system ends up at (E∗1 , E

∗
2) rather than it’s initial and (E1, E2).

This obscures just how much work “much” is doing in the previous sentence, though: the
number of microstates available grows exponentially with system size, and so if we were to
ask how long we would have to wait before seeing our combined system at (E1, E2) rather
than (E∗1 , E

∗
2), the answer would be related to an exponential of that exponential. Needing

to wait this long to see something is a practical way of saying “you will never see that.”

77“The law that entropy always increases holds, I think, the supreme position among the laws of Nature.
If someone points out to you that your pet theory of the universe is in disagreement with Maxwell’s equations
- then so much the worse for Maxwell’s equations. If it is found to be contradicted by observation - well,
these experimentalists do bungle things sometimes. But if your theory is found to be against the Second
Law of Thermodynamics I can give you no hope; there is nothing for it to collapse in deepest humiliation.”
– Arthur Eddington [44]
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6.1.4 The ideal gas in the microcanonical ensemble

We return to our favorite toy system for illustrating concepts, the ideal gas of N particles.
We ignore any particle interactions, and say we have

H =
N∑
i=1

p2
i

2m
+ U(qi),

where the potential U simply imposes strict confinement to a box of volume V (i.e., we
take U(qi) = 0 if particle i is inside the box and ∞ if it is outside the box). Explicitly, the
microcanonical ensemble has a probability density function

p(µ) =
1

Ω(E, V,N)
·
{

1 if
∑

i(p
2
i /(2m)) = E ± 1

2
∆E and qi ∈ box

0 otherwise
. (6.12)

We can calculate Ω by the requirement that p(µ) is properly normalized, i.e.,
∫ ∏

i dVip(µ) =
1. The integrals over qi are all trivial: each of those N integrals just gives a factor of V . The
integral over the momenta is down by noting we are constraining the momenta to a (finite-
thickness shell around a) surface of a hypersphere, given by

∑N
i p

2
i = 2mE. We thus need

to know the area of a 3N -dimensional sphere of radius R =
√

2mE. The relevant formula
for a d-dimensional sphere is

Ad =
2πd/2

(d/2− 1)!
Rd−1, (6.13)

where it is easy to check that this gives the right result in 2D (and 3D, since (1/2)! =
√
π/2).

Putting this together, with d = 3N , we calculate:

Ω(E, V,N) = V N 2π3N/2

(3N/2− 1)!
(2mE)(3N−1)/2∆E (6.14)

The entropy of the ideal gas is then just the log of this normalization factor. Using
Stirling’s approximation:

S(E, V,N) = kB

[
N lnV +

3N

2
ln(2πmE)− 3N

2
ln

3N

2
+

3N

2

]
= NkB ln

[
V

(
4πemE

3N

)3/2
]
, (6.15)

where in the first line we have dropped terms of order 1 and of order lnE ∝ lnN by arguing
the latter are small compared to these terms of order N in the thermodynamic limit.

With the entropy in hand, and writing dS = 1
T
dE + P

T
dV − µ

T
dN we can get the usual

properties of the ideal gas by differentiating the entropy as appropriate. For instance,

1

T
=

∂S

∂E

∣∣∣∣
N,V

=
3

2

NkB
E
⇒ E =

3

2
NkBT,

the usual equipartition result in the absence of a potential. Similarly,

P

T
=

∂S

∂V

∣∣∣∣
N,E

=
NkB
V
⇒ PV = NkBT,
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the ideal gas equation of state.
As a final example of a simple calculation, what about the probability distribution for

finding a particle with some momentum vector p1? Well, we can calculate the unconditional
PDF by integrating out everything else:

p(p1) =

∫
d3q1dΓN2 p(µ)

= V
Ω(E − p2

1

2m
, V,N − 1)

Ω(E, V,N)
. (6.16)

One can explicitly check (by plugging in the result of Eq. 6.14, using Stirling’s formula,
and noting that p2

1/E is a number of order 1/N) that this explicitly gives you a Maxwell-
Boltzmann distribution for the momentum:

p(p1) =
1

(2πmkBT )3/2
exp

(
−p2

1

2mkBT

)
.

Show one more line above, then foreshadow this calculation v/v the reservoir stuff we’re
about to do in the canonical ensemble.

A comment about the form of the Maxwell-Boltzmann distribution We
derived the Maxwell-Boltzmann distribution result for the velocities in a dilute gas of
non-interacting particles, but it is actually much more general, and Maxwell’s original
derivation relies on nothing by rotational invariance. It’s cool, so I reproduce it here:
Consider the distribution of velocities in, say, the x direction, and call that distribution
p(vx). By rotational symmetry we have the same distribution in the y and z directions.
Rotational symmetry also guarantees that the full distribution cannot depend on the
particular direction for the momentum, but only on the speed c =

√
v · v. So, we want

functions pc(c) and p(vx) that satisfy

pc(c)dvxdvydvz = p(vx)p(vy)p(vz)dvxdvydvz.

Remarkably, there is only one solution which satisfies this, and it is

p(vx) = A exp
(
−Bv2

x

)
,

for some constants A and B. Thus, the distribution of speeds must be

pc(c)dvxdvydvz = 4πc2pc(c)dc = 4πA3c2e−Bc
2

dc.

Nifty. Determining that the coefficients have specific values, like B = m
2kBT

as in the ideal
gas, requires a harder microscopic calculation of the sort we just did.

6.1.5 Gibbs’ Paradox: What’s up with mixing entropy?

You will notice that Eq. 6.15, giving the entropy of an ideal gas, has a major flaw: we expect
entropy to be extensive, but under a transformation (E, V,N)→ (λE, λV, λN) the entropy
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actually changes to λ(S+NkB lnλ) rather than λS. There are these extra contributions that
come from the integration over positions, like V N , and this additional contribution is related
to the entropy of mixing distinct gases. Gibbs’ paradox, the fact that this expression for the
entropy suggests an increase even if two identical gases are mixed, is subtle, with some to
this day arguing that its resolution must be quantum mechanical78 and others arguing that
the paradox is toothless and can be resolved classically79. We will come back to this issue
when we talk about quantum statistical mechanics.

As our yet-to-be-understood resolution to the paradox, we will from now on modify our
phase-space measure for identical particles to be

dΓ =
1

h3NN !

N∏
i=1

d3qid
3pi. (6.17)

6.2 The canonical ensemble

In the last section we defined the microcanonical ensemble by considering a macrostate
with a specified energy, E, and we were able to derive an expression for the temperature:
T−1 = ∂S

∂E

∣∣
x
. In the chapter on thermodynamics, though, we saw that E and T are both

functions of state; because of this we think it should be possible to reverse this chain, starting
with a statistical description in which the temperature of a macrostate is prescribed and an
expression for the energy is derived.

Welcome to the canonical ensemble80, in which we specify the macrostate M(T,x). We
think of prescribing the temperature of the system by putting it in thermal contact with the
reservoir, which is another macroscopic system that is so large that it’s own temperature
does not change as a result of interacting with the system of interest. Intuitively, this should
feel like a reasonable possibility: if we imagine tossing a warm pebble into the ocean, the
temperature of the pebble will surely equilibrate with the temperature of the ocean, and no
thermometer reading the temperature of the ocean will notice the difference.

The goal of the statistical mechanical formulation of thermodynamics is to write down
microstate probabilities that we can associate with a given macrostate, pM(µ) (and from
there derive thermodynamic consequences). You may have expected that our strategy would
be to assume a form for this probability and derive consequences – in fact, some treatments
follow the kind of reasoning we did above (and in Sec. 4.5.3) for each different ensemble,
assigning probabilities by maximizing entropy subject to the relevant known features of the
system.

Here, instead, we rely on the central postulate of statistical mechanics, Eq. 6.1, and
derive more consequences from it! Let’s define the system to be in microstate µS with energy
HS(µS) and the reservoir to be in microstate µR with energy HR(µR), satisfying Etotal =

78see, e.g., Kardar [3]
79see Jayne’s discussion [45], or that of Frenkel’s more recent article [46]
80“We consider especially ensembles of systems in which the index (or logarithm) of probability of phase

is a linear function of the energy. This distribution, on account of its unique importance in the theory of
statistical equilibrium, I have ventured to call canonical...” J. W. Gibbs [47]

http://www.damtp.cam.ac.uk/user/tong/statphys/jaynes.pdf
https://arxiv.org/abs/1312.0206
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HS(µS) +HR(µR).The joint probability of the microstates µS ⊕ µR is then assumed to be

p(µS ⊕ µR) =
1

ΩS⊕R(Etotal)
·
{

1 if HS(µS) +HR(µR) = Etotal
0 otherwise

(6.18)

Ultimately, though, we are not interested in this microcanonical joint-probability distribution
for the combined system, we want the unconditional PDF for the microstates. But this we
can obtain (as expected) by summing the joint PDF over the microstates of the reservoir:

p(µ) =
∑
µR

p(µS ⊗ µR) (6.19)

We make progress, here, by doing something similar to how we calculated p(p1) in the
microcanonical ensemble in Eq. 6.16: we say that by looking at a specific system microstate
µ, the sum over reservoir states in the above equation is restricted to run over microstates
with HR(µR) = Etotal −HS(µS):

p(µS ⊗ µR) =
ΩR(Etotal −HS(µS))

ΩS⊕R(Etotal)
. (6.20)

Let’s focus on the numerator for now (noting that the denominator, which just provides
an overall normalization, can always be effectively recovered by imposing a normalization
condition of p(µ) when we’re done). Well, ΩR is related to the entropy of the reservoir:

ΩR(Etotal −HS(µS))

ΩS⊕R(Etotal)
∝ exp

(
SR(Etotal −HS(µS))

kB

)
. (6.21)

Let’s write that entropy expression as

SR

(
Etotal

(
1− Hs(µS)

Etotal

))
≈ SR(Etotal)−Hs(µS)

∂SR
∂ER

= SR(Etotal)−
HS(µS)

T
,

where we have finally used our assumption that the reservoir is (energetically) humongous
relative to the system. Combining this approximation with our evaluation of the uncondi-
tional PDF, and dropping the subscript S since now nothing about the reservoir is left, we
ultimately arrive at the canonical probability distribution for a microstate with a specified
temperature and set of generalized displacements:

p(µ) =
1

Z(T,x)
e−βH(µ), (6.22)

where again β = (kBT )−1, and we’ve defined the partition function81

Z(T,x) =
∑
µ

e−βH(µ), (6.23)

which plays a central role in the statistical mechanical description of macroscopic systems.

81So-called because of its description of how probabilities of are partitioned among all of the states with
various energies. As far as I can tell the terminology dates to Darwin & Fowler’s 1922 article, “On the
Partition of Energy,” in which they connect their partition function to the “zustandssumme” of Planck’s
1921 article. I think the German term (roughly, the “sum-over-states”) is more transparent, which is why
I’ve always liked the notation here.
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6.3 The partition function and thermodynamics

Our instinct – speculating from our work in the microcanonical ensemble – is that this
partition function, this normalization factor of our probability distribution, will be connected
to some82 thermodynamically interesting quantities. To see how that comes about, remember
that we’ve specified the temperature of the system, and it is exchanging energy back and
forth with the reservoir to maintain that temperature. The energy of the system is now a
random variable, which we’ll call E , and we associate the thermodynamic energy E with the
expectation value of this quantity, E = 〈E〉. What is the probability distribution associated
with E? Glad you asked! We change variables from µ to H(µ) and get

p(E) =
∑
µ

p(µ)δ (H(µ)− E) =
1

Z
e−βE

∑
µ

δ (H(µ)− E) ,

but the sum over delta functions just picks out the number of microstates with the appro-
priate energy Ω(E), which is related to the entropy, so

p(E) =
Ω(E)e−βE

Z
=

1

Z
exp

[
S(E)

kB
− E
kBT

]
=

1

Z
exp [−βF (E)] , (6.24)

where F = E − TS(E) is obviously going to be related to the Helmholtz free energy. We can
further simplify by noting that both S and E should be extensive, so we should be able to
approximate sums of exponentials by the dominant term... we expect the probability to be
sharply peaked about some most probably energy, E∗, and so we approximate the partition
function as

Z =
∑
µ

e−βH(µ) =
∑
E

e−βF (E) ≈ e−βF (E∗). (6.25)

This so-called “method of most probable values” suggests a logarithmic relationship between
F and Z. This is reinforced by the “method of mean values,” where we compute the average
energy of the system as

〈H〉 =
∑
µ

H(µ)
exp (−βH(µ))

Z
= − 1

Z

∂

∂β

∑
µ

e−βH = −∂ lnZ

∂β
. (6.26)

Thermodynamically we recall that we could write

E = F + TS = F − T ∂F

∂T

∣∣∣∣
x

=
∂(βF )

∂β
,

so this approach suggests the same identification of the Helmholtz free energy as

F (T,x) = −kBT lnZ(T,x). (6.27)

82All?
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Are the mean and most probable values close? We have done two separate calcula-
tions suggesting a link between the partition function and the Helmholtz free energy, and for
them to be mutually consistent we need the mean and most probable values to coincide in
the thermodynamic limit. We’ll address this question by looking at the variance of the energy
and comparing it to the mean. Notice that the partition function, viewed as function of β,
is proportional to the characteristic function of H, with β standing in for the combination
ik. So, we can easily generate moments by taking derivatives of Z with respect to β, e.g:

− ∂Z

∂β
=
∑
µ

He−βH, ∂2Z

∂β2
=
∑
µ

H2e−βH. (6.28)

From this, we see that the first moment is just

〈H〉 = 〈H〉c = − 1

Z

∂Z

∂β
= −∂ lnZ

∂β
(6.29)

With a moment generating function comes a cumulant generating function, here just lnZ.
Generally, taking care of the minus signs, we have

〈Hn〉c = (−1)n
∂n lnZ

∂βn
,

and explicitly〈
H2
〉
c

=
∂2 lnZ

∂β2
= −∂ 〈H〉c

∂β
= kBT

2 ∂ 〈H〉
∂T

∣∣∣∣
x

⇒
〈
H2
〉
c

= kBT
2Cx,

where we have identified that the variance of the energy is related to the heat capacity. Also,
to answer the question posed just above, note that every cumulant of H is proportional to
N , which itself tells you that the relative error

√
〈H2〉c/ 〈H〉c ∼ N−1/2, so that it vanishes

in the thermodynamic limit. Thus, the mean energy and most probable energy are identical
as N →∞.

Thermodynamic connections: Do the expressions we have derived above connecting the
partition function with the Helmholtz free energy make sense with our earlier expectations
from thermodynamics? Thermodynamically, the canonical ensemble should correspond to a
Legendre transform of the internal energy, F = E − TS. Let’s deduce the entropy in the
canonical ensemble via two equivalent means to show that this is, indeed, what we get. The
first is to define the (Shannon) entropy associated with the probability distribution in Eq.
6.22 directly:

S = kB 〈− ln p(µ)〉 = kB 〈(βH + lnZ)〉 =
E − F
T

, (6.30)

recovering once again the familiar expression for the Helmholtz free energy, F = E − TS.
Alternately, we can think about our knowledge of thermodynamics, where dF = −SdT +J ·
dx. This gives

S = − ∂F

∂T

∣∣∣∣
x

= kB
∂(T lnZ)

∂T
= kB

(
lnZ + T

∂ lnZ

∂T

)
= kB

(
lnZ − 1

kBTZ

∂Z

∂β

)
=
−F + 〈H〉

T
.
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6.4 Non-interacting systems and mean field calcula-

tions

To get more practice with partition functions and how to manipulate them to get at the
physical behavior of macroscopic systems, let’s pause and work though some examples.

6.4.1 The ideal gas in the canonical ensemble

We first think about the ideal gas, and we’ll see that the canonical ensemble returns the
familiar relations we’ve come to expect. The probability distribution is83

p(µ) =
1

Z
exp

(
−β

N∑
i=1

p2
i

2m

)
·
{

1 if qi ∈ box
0 otherwise

, (6.31)

and as always our task is basically to compute the partition function: “Z =
∑

µ e
−βH”. In this

case, what we mean by the sum over all possible states is the integral (with the correction
to the phase space measure from Eq. 6.17!) over all possible positions and momenta the N
gas particles could have:

Z(T, V,N) =

∫
1

N !

N∏
i=1

d3qid
3pi

h3
exp

(
−β

N∑
i=1

p2
i

2m

)
. (6.32)

This integral contains N copies of an integral over the volume and a bunch of Gaussian
integrals. As such, we can read off the answer:

Z(T, V,N) =
V N

N !

(
2πmkBT

h2

)3N/2

. (6.33)

Let’s take a moment to define the thermal de Broglie wavelength84 λ = h/
√

2πmkBT . With
this bit of notation, the partition function is the more aesthetically pleasing

Z(T, V,N) =
1

N !

(
V

λ(T )3

)N
,

Where I’ve written λ(T ) here to remind us that when we take derivatives of this partition
function with respect to temperature, all the temperature dependence is buried in λ.

With the partition function in hand, we write the free energy as

F = −kBT lnZ = −NkBT
(

ln

(
V e

N

)
+

3

2
ln

(
2πmkBT

h2

))
, (6.34)

83Note that the very form of the probability distribution here immediately gives us the microcanonical
result we had for p(p1).

84Anticipating future developments in this course, λ helps characterize the regime in which classical
statistical mechanics is typically valid: if λ is roughly the same order of the typical separation between
particles then quantum effects become important.
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or, using the more compact expression with λ,

F = −kBT ln

(
1

N !

(
V

λ3

)N)
= NkBT

(
lnN − 1− ln

(
V

λ3

))
= NkBT

(
ln

(
Nλ3

V

)
− 1

)
. (6.35)

From here, and using the thermodynamic expression dF (T, V,N) = −SdT − PdV + µdN ,
we can extract the usual properties of the ideal gas. For instance, we quickly have that

P = − ∂F

∂V

∣∣∣∣
T,N

=
NkBT

V
,

so the familiar ideal gas law is again derived. We can likewise re-derive the equipartition of
energy – and get an explicit expression for the entropy of the canonical ideal gas, by noting
that

S = − ∂F

∂T

∣∣∣∣
V,N

= −NkB
([

ln

(
Nλ3

V

)
− 1

]
− 3T

λ′(T )

λ(T )

)
.

Noting that λ′/λ = −(2T )−1, this simplifies to

S =
5

2
kBN − kBN ln

(
Nλ3

V

)
.

Combining this with the thermodynamic E = F + TS gives E = 3NKBT/2, as expected,

It is interesting to note – or perhaps completely expected – that it seems not to matter
which ensemble the gas is in: we recover the same macroscopic properties of the system either
way. This will be a general theme: with one massive exception (having to do with the behavior
of systems near phase transitions), different ensembles return the same physical results once
you take the thermodynamic, N →∞ limit and identify the means of fluctuating quantities
with the thermodynamic variables (just as we identified the average energy, 〈H〉 with the
thermodynamic internal energy E).

6.4.2 Non-interacting spins in a field

Earlier, in our discussions of phase transitions, we talked about the Ising model. As a warm-
up, consider a variation of the Ising model in which the spins don’t actually interact with
each other, and only couple with an external field:

H = −B
∑
i

si,
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where si = ±1. We again want to compute the partition function, and in this context the
“sum over states” is a sum over all possible up-down configurations of each spin:

Z =
∑
µ

e−βH =
∑
{si=±1}

exp

(
−βB

∑
i

si

)
(6.36)

=
∑
{si=±1}

∏
i

e−βBsi

=
N∏
i=1

(
e−βB + eβB

)
= 2N coshN(βB).

From this we immediately get the free energy,

F = −kBT lnZ = −NkBT ln [2 cosh (βB)] .

What is the magnetization, M =
∑

i si? Note that the probability of a microstate here is

p(µ) =
1

Z
e−βBM ,

so

〈M〉 =
∑
µ

Mp(µ) =
∑
µ

M

Z
e−βBM .

That is: just as we saw above that Z generates moments of H, because of the particularly
simple, single-term in the Hamiltonian in this case we also see that Z can be used to generate
moments of M , since ∂Z

∂B
=
∑

µ−βMe−βBM . Thus, for this non-interacting model,

〈M〉 =
1

β

∂ lnZ

∂B
= −∂F

∂B
= N tanh (βB) . (6.37)

6.4.3 Mean field Magnets

We’ve seen above that in the canonical ensemble, calculating the properties of non-interacting
systems becomes quite straightforward, and the calculation of N -particle partition functions
is as simple as calculating the 1-particle partition functions. Perhaps, since the particles
are non-interacting, this is not so surprising! This inspires a strategy for analyzing more
complicated, interacting problems by trying to turn them into non-interacting systems in
some effective average field.

Let’s see this in action. We again write the Ising model Hamiltonian,

H = −J
∑
〈ij〉

sisj −B
∑
i

si, (6.38)

where J determines the strength of the spin-spin interaction, B is the external field, and
∑
〈ij〉

indicates a sum over all spins i and j that are neighbors of each other. To make progress,
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let’s approximate the spin-spin interactions as

sisj = ([si −m] +m) ([sj −m] +m)

= (si −m)(sj −m) +m ((si −m) + (sj −m)) +m2

≈ m(si + sj)−m2. (6.39)

That is, we assume that the fluctuations of spins away from the average spin (m) are small on
average. Of course, it is not literally the case that for each i, j we consider that (si−m)(sj−m)
is small – it certainly need not be, since the s variables are ±1 but the value of m might be
anywhere between 0 and 1 – but rather than when we sum over all interactions, σ〈ij〉, these
terms can be neglected85.

With this approximation, we can write our mean field Hamiltonian as

H ≈ JNqm2

2
− (Jqm+B)

∑
i

si, (6.40)

where q is the number of nearest neighbors (q(d) = 2d for the hypercubic lattice). And we’ve
done it! We’ve transformed our problem into a non-interacting Ising model in an effective
external field, where

Beff = B + Jqm.

We then take the free energy F to be

F = log
(

2Ne−βJNqm
2/2 coshN (βBeff )

)
. (6.41)

Finally, we self-consistently determine what the value of m is by connecting the definition
with the thermodynamic result: m = 1

N
〈si〉 = 1

Nβ
∂F
∂B

.

m = tanh (βB + βJqm) . (6.42)

This is precisely the Curie-Weiss equation of state for the magnet that we investigated when
we looked at phase transitions!

6.5 Gibbs canonical ensemble

Briefly86, it is sometimes more convenient to work in an ensemble where the internal energy
can change by exchanging heat with a reservoir (as in the canonical ensemble) but also by
exchanging work.The macrostate M(T,J) is now specified by the temperature and forces
acting on the system, and we view both the energy and the generalized coordinates x as
random variables (but not including chemical work, which we will treat in the grand canonical
ensemble shortly... thus, N is fixed). We proceed just as above, and find that the microstates
of the system have a probability distribution

p(µ) =
exp (−βH(µ) + βJ · x)

Z(T,N,J)
, (6.43)

85Are you satisfied by this handwaving argument? If not, wait until Sec. 8.2 when we derive exactly the
same mean field theory from a more principled variational argument!

86i.e., entirely by analogy with the last section
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where the Gibbs partition function is

Z(T,N,J) =
∑
µ,x

exp (−βH(µ) + βJ · x) . (6.44)

We can use, again, either the “most probable value” or “mean value” method to relate the
expectation values of the generalized displacements to the Gibbs partition function, like

〈x〉 = kBT
∂ lnZ
∂J

, (6.45)

and we use the thermodynamic result that x = −∂G
∂J

to make the identification

G(T,N,J) = −kBT lnZ, (6.46)

where we have again written the Gibbs free energy encountered in Chapter 1 as G = E −
TS − x · J . On can, for instance, extract the enthalpy H = E − x · J = −∂ lnZ

∂β
, or the heat

capacity at constant force as CJ = ∂H
∂T

6.6 The grand canonical ensemble

We now generalize once more from the canonical ensemble to the grand canonical ensemble.
For the canonical ensemble we said that even though energy was a conserved quantity, it
often makes more sense to put a system in contact with a reservoir of heat so that temperature
is the fixed or controlled quantity; we let E becomes a random variable as the system and
the reservoir exchange heat, and identified the thermodynamic E as the expectation value of
the Hamiltonian87. In the same way, it often behooves us to generalize yet further and allow
our system to also exchange particle number with the reservoir – now both N and E are
variables and the expectation values, 〈N〉 and 〈E〉 are identified with thermodynamically
interested quantities.

I’ll be honest and tell you: when I first took thermodynamics, I failed to appreciate
why the grand canonical ensemble was interesting... “Chemical potential” sounded a lot
like “chemistry” to me, and I saw this topic as a bit of esoterica. As we will see repeatedly
in the coming chapters, the grand canonical ensemble is secretly central to our ability to
describe systems undergoing phase transitions, and it often (paradoxically?) makes it easier
to calculate various thermodynamic quantities.

So, we will turn to a reservoir for our system providing a fixed value of temperature T
and chemical potential µ, and we want to find the probability distribution corresponding
for the grand canonical ensemble, in which the macrostates are functions of M(T, µ,x).
Notationally, since µ is the chemical potential, I’ll try to be careful about using µS to refer
to a microstate of the system we’re interested in. The probability density function for µS
is again derived by invoking the fundamental postulate and summing over all states of the
reservoir, ultimately giving

p(µS) =
1

Q(T, µ,x)
exp [−βH(µS) + βµN(µS)] , (6.47)

87Our attitude could be perhaps be summarized as, “We measure temperature all the time, but when,
after all, was the last time you precisely measured the energy of a macroscopically large system?”
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where N(µS) is the number of particles in microstate µS, and where Q is the grand partition
function:

Q(T, µ,x) =
∑
µS

exp [βµN(µS)− βH(µS)] . (6.48)

We can usefully rearrange the above summation by first grouping together all of the mi-
crostates with the same number of particles in them. Letting HN refer to the Hamiltonian
associated with the N -particle system, we write next iteration: choose a different symbol for
fugacity88

Q(T, µ,x) =
∞∑
N=0

eβµN
∑
µS

e−βHN (µS) =
∞∑
N=0

zN
∑
µS

e−βHN (µS), (6.49)

where we have additionally defined the fugacity89 z = exp(βµ). Notice, by the way, that
the second sum – over microstates with a particular number of particles – are the canonical
partition functions associated with an N -particle system, so we can additionally write

Q(T, z,x) =
∞∑
N=0

zNZN(T,x), defining Z0 ≡ 1. (6.50)

This form makes it seem that to calculate the grand canonical partition function we need to
have already calculated the canonical partition function. In principle we indeed do, but in
later chapters90 we’ll see how we can sometimes make great progress in evaluating Q even
in situations where evaluating Z is very difficult.

6.6.1 Number fluctuations in the grand canonical ensemble

Earlier we showed the generic equivalence of the canonical and microcanonical ensembles as
N → ∞ by establishing that the average value of the energy and the most probable value
of the energy became indistinguishable in the thermodynamic limit. Here we do the same
thing by considering both the mean and most typical value of the number of particles. We
note that from the definition of Q we can read off the total weight of the microstates with
N particles, the probability for finding the system with N particles is

p(N) =
eβµNZ(T,N,x)

Q(T, µ,x)
. (6.51)

We write the average as

〈N〉 =
1

Q
∂Q
∂(βµ)

=
∂ lnQ
∂(βµ)

, (6.52)

and the variance as〈
N2
〉
c

=
〈
N2
〉
− 〈N〉2 =

1

Q
∂2Q
∂(βµ)2

−
(
∂ lnQ
∂(βµ)

)2

=
∂2 lnQ
∂(βµ)2

=
∂ 〈N〉
∂(βµ)

. (6.53)

88Common choices for the symbol used for fugacity include f, z, λ, all of which I want to use for other
things...maybe we go with φ?

89Derived from fugere, to flee. The term was popularized in an early textbook by Gilbert Lewis and Merle
Randall as an “escaping tendency,” referring to the flow of matter between phases, and playing a similar role
to temperature in the flow of heat [48].

90both on quantum stat mech and on interacting systems
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We again see that the variance is proportional to 〈N〉, so we again get that the relative
fluctuations, σN/ 〈N〉 vanish in the thermodynamic limit. This suggests the equivalence of
the grand canonical ensemble with the others, but have we been a little too glib, here?

From the above we see that β 〈N2〉c = ∂〈N〉
∂µ

∣∣∣
T,V

, recall that in Sec. 1.6.1 we showed that

∂N
∂µ

∣∣∣
T,V

was itself related to the isothermal compressibility. We can use that result to write

a simple fluctuation-response relationship, connecting the relative fluctuations in particle
number to the compressibility (one of our thermodynamic response functions):

〈N2〉c
〈N〉2

=
1

βN2

∂N

∂µ

∣∣∣∣
T,V

=
kBT

V
κT . (6.54)

From this we see that ordinarily the compressibility is just some value, and in the ther-
modynamic limit of N →∞, V →∞ the relative RMS fluctuations in particle number just

scale like O
(

1√
V

)
∼ O(N−1/2). Near phase transitions, though, more interesting things can

happen! For instance, near a liquid-vapor phase transition at Tc, experiments suggest that
the isothermal compressibility is one of these critically scaling quantities, κT (Tc) ∼ N0.63,
suggesting unusually large fluctuations of particle density near the critical point. Such fluc-
tuations can be seen in experiments91.

So, under these sorts of circumstances the formalism associated with the grand canonical
ensemble could in principle give non-identical answers as the formalism associated with
the canonical ensemble. In these cases, we have no choice but to use the grand canonical
ensemble.

6.6.2 Thermodynamics in the grand canonical ensemble

From the above, we now once again approximate the sum in Eq. 6.48 by its single largest
term, which corresponds to the typical value of N (note that we feel free to go back and
forth between fugacity and chemical potential representations as we see fit):

Q(T, µ,x) = lim
N→∞

∞∑
N=0

[
eβµNZ(T,N,x)

]
≈ eβµN

∗−βF = e−βG, (6.55)

where

G(T, µ,x) = E − TS − µN = −kBT lnQ

is the grand potential (which we first met in Chapter 1), which is up to a factor of −kBT
what Pathria defines as the q-potential. We can recover typical thermodynamic relationships
using dG = −SdT−Ndµ+J ·dx, and extract pressures or heat capacities by usual derivative
manipulations.

Entropy in the grand canonical ensemble can be defined by exactly the same two paths
we saw when considering the canonical ensemble. We can either define the Shannon entropy

91check out, for instance, some of the critical opalescence videos that are easy to find on youtube

https://www.youtube.com/watch?v=DIGdbmJvFUw
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associated with the probability distribution in Eq. 6.47, or take the thermodynamic path of
S = − ∂G

∂T

∣∣
µ,x

, and we would ultimately find expressions like

S =
E − F
T

= kBT
∂ lnQ
∂T

∣∣∣∣
µ,x

−NkB ln z + kb lnQ.

6.6.3 The ideal gas in the grand canonical ensemble

We once again churn through our standard example, the ideal gas, for the grand canonical
ensemble. We have a macrostate M(T, µ, V ), where the corresponding microstates are over
particle positions and momenta with an indefinite number of particles in the specified vol-
ume. Again using the thermal de Broglie wavelength λ = h/

√
2πmkBT , the grand partition

function is

Q(T, µ, V ) =
∞∑
N=0

eβµN
1

N !

∫ ( N∏
i=1

dVi
h3

)
exp

[
−β

N∑
i=1

p2
i

2m

]

=
∞∑
N=0

1

N !
eβµN

(
V

λ3

)N
= exp

(
eβµ

V

λ3

)
(6.56)

⇒ G(T, µ, V ) = −kBT lnQ = −kBTeβµ
V

λ3
(6.57)

We can immediately read off things like92

P = − ∂G
∂V

∣∣∣∣
T,µ

= kBT
z

λ3

or

N = − ∂G
∂µ

∣∣∣∣
T,V

=
zV

λ3
⇒ PV = NkBT,

as we have come to expect the equation of state for the ideal gas to look.
Notice, also, that G for an ideal gas only depends on a single extensive variable: V . Since

we expect G to itself be extensive93, it must be that G ∝ V . We have a name for the constant
of proportionality: “pressure,” so G(T, V, µ) = −P (T, µ)V . This makes for an easy method
of computing pressures of systems that depend only on one extensive variable94.

It is worth saying a bit more about the chemical potential, here. Rearranging that last
expression for N gives

µ = kBT log

(
λ3N

V

)
, (6.58)

92switching back to the fugacity, largely to save on TEXtime
93i.e., satisfying G(T, λV, µ) = λG(T, V, µ)
94As we’ll see in the chapter on Quantum statistical mechanics, for example, when we calculate the grand

partition function of ideal quantum gases.
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and if λ3 < V/N , as we certainly expect if we are to be doing classical calculations in the first
place, then the chemical potential is negative! Is it clear why this makes sense? By writing
µ as conjugate to N , we intuitively think of it as the energy cost associated with adding an
extra particle to the system, but we need to look more carefully at the definition:

µ =
∂E

∂N

∣∣∣∣
S,V

.

That is, µ is the energy cost of adding a particle at fixed entropy and volume. In general,
adding a particle will in fact increase the entropy (since there are more ways of partitioning
the available energy), so if we are holding entropy fixed then the system must be lowering
its energy when adding a particle. Hence, µ < 0 for the classical ideal gas.

6.7 Classical statistical mechanics: Some obvious issues

Classical statistical mechanics is an incredibly powerful framework for understanding the
physical properties of many systems, but it certainly has limitations. We have already seen
the Gibbs paradox and our current, somewhat ad hoc solution of throwing in a factor of
N ! to account for classically indistinguishable particles. We have also seen that in going
from S = −

∑
i pi ln pi to S = −

∫
dx p(x) ln p(x) there is a problem of choosing units, and

in the last few sections we have introduced a random factor of h to fix the unit problem
without understanding why a particular scale of coarse-graining is appropriate (i.e., why the
thing we called h was the Planck constant). In this section we also emphasize that there
are observable, low-temperature phenomena for which classical mechanics makes incorrect
predictions, further necessitating the introduction of quantum mechanical to our description.
The following subsections provide a few concrete illustrations.

6.7.1 Dilute diatomic gases

Actually, classical statistical mechanics fails to predict heat capacities both in the gaseous
phase and in the solid phase... not a great track record. Let’s see what happens for a dilute
gas of diatomic molecules.

We’ll take a simplified view and consider diatomic molecules consisting of two atoms in
a bound state, and let’s write down an idealized, classical model for such a molecule: two
equal masses connected by a spring. So, in addition to the usual translational modes we’ve
been considering, the molecule can also move via (a) rotations in which the molecule rigidly
rotates about either of the two axes95 normal to the symmetry axis, with moment of inertia
I, and (b) vibrations in which the molecule oscillates along the axis of symmetry.

We first assume that the gas is sufficiently dilute that the molecules behave independently,
so that the total partition function is

Z(N) =
ZN

1

N !
,

95we neglect the rotation about the axis of symmetry, arguing that it has a low moment of inertia compared
to the other two. We’ll see that this is hardly the problem.
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Where Z1 is the partition function for a single diatomic molecule. We further assume that
three modes of molecular motion are all independent, in which case the single-molecule
partition function factorizes into the contribution due to each term:

Z1 = ZtransZvibZrot.

We already know what the translational partition function looks like, what about the other
two terms?

From your classical mechanics course, the Lagrangian for the rotational degrees of freedom
is

Lrot =
1

2
I
(
θ̇2 + φ̇2 sin2 θ

)
,

with conjugate momenta

pθ =
∂Lrot

∂θ̇
= Iθ̇, pφ =

∂Lrot

∂φ̇
= Iφ̇ sin2 θ.

The hamiltonian for the rotational piece is therefore

Hrot = θ̇pθ + φ̇pφ − L =
p2
θ

2I
+

p2
φ

2I sin2 θ
.

So, the rotational contribution to the partition function is

Zrot =
1

h2

∫
dθdφdpθdpφe

−βHrot =
8π2IkBT

h2
. (6.59)

What about the vibrational mode? It’s just a harmonic oscillator. Denoting the displace-
ment away from the equilibrium position of the molecular “spring” by ζ and the vibrational
frequency by ω, the Hamiltonian is

Hvib =
p2
ζ

2m
+

1

2
mω2ζ2,

from which we find the partition function contribution to be

Zvib =
1

h

∫
dζdpζ e

−βHvib =
2πkBT

hω
. (6.60)

Putting together all of these ingredients (or, by your expectations from equipartition of
energy among all of the quadratic modes in the combined Hamiltonian), we expect that the
heat capacity and constant volume for our diatomic gas is

CV =
7

2
NkB, (6.61)

an end result which does not depend on the precise value of I or the stiffness of the bond
between the atoms. The only problem is that our prediction for the heat capacity is... not
borne out in the experimental data. In Fig. 6.1 I’ve schematically96 plotted the heat capacity

96Actual data available from NIST, if you’re interested
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Figure 6.1: (Schematic) heat capacity of hydrogen gas vs logarithmically scaled
temperature.

of H2 – the simplest diatomic gas – over a broad range of temperatures. At very high
temperatures we do see the heat capacity we expected, but at the lowest temperatures the
system seems to behave like a monatomic gas, so apparently the diatomic molecules are
neither rotating nor vibrating. Even away from the typical “very low temperatures” we
expect to see quantum effects in – that is, even at room temperature! – there is a large
discrepancy between our prediction and the actual heat capacity, and apparently there are
rotations but not vibrations (we’ll see how we picked out that particular mode later).

This behavior was arguably the first time that quantum mechanics revealed itself in
experiments, and scientists at the end of the 19th century were increasingly unsettled.

6.7.2 Black-body radiation

The classical failure of the calculation of the black-body spectrum (i.e., what light is emitted
from a source at a particular temperature) and its quantum resolution is a story that I suspect
is familiar from previous courses in quantum mechanics97. Very briefly, then, we consider our
first quantum gas: a gas of photons. In principle we are interested in the emission spectrum
of an idealized substance that can absorb photons of any wavelength and reflects none of
them. In a real atomic system there would be a (potentially) interesting pattern of absorption
and emission lines, but we ignore such details for now and consider our idealized substance
which, at zero temperature, would appear black (hence the name).

So, we know a photon is characterized by its wavelength λ or its frequency ω = 2πc/λ = kc
for speed of light c and wavevector k, with energy E = ~ω. An important fact about photons

97“It was an act of desperation. For six years I had struggled with the blackbody theory. I knew the
problem was fundamental and I knew the answer. I had to find a theoretical explanation at any cost, except
for the inviolability of the two laws of thermodynamics.” – Max Planck [49]
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is that they are not conserved : there is no reason that the walls of our black-body substance
couldn’t absorb a photon and then emit two98. Thus, when we calculate quantities in the
canonical ensemble we need to make sure that we sum over possible states with different
numbers of photons, since they are allowed states. Equivalently, we can imagine that we
work in the grand canonical ensemble, but with chemical potential µphoton = 0.

To build up the partition function, let’s first consider photons with a particular frequency
ω; N such photons would have energy E = N~ω, and summing over the allowed N gives a
partial partition function

Zω = 1 + e−β~ω + e−2β~ω + e−3β~ω + · · · = 1

1− e−β~ω
. (6.62)

We assume that the different frequencies are independent, and the total partition function
is a product of independent partition functions, so we can write the logarithm as a sum:

logZ =

∫ ∞
0

dωg(ω) logZω,

where g(ω) is the density of states : g(ω)dω counts the number of states in the frequency
range between ω and ω + dω. We can calculate this by, say, assuming periodic boundary
conditions in a box of linear size L, which then permits wavevectors k = 2π{nx, ny, nz},
where {nx, ny, nz} are all integers. Planck suggested that the allowed values of energy must
be quantized,

HEM =
∑
k,α

~ck
(
nα(k) +

1

2

)
, nα(k) = 0, 1, 2, . . . ,

where α refers to the polarization of the photon. One can use this to compute the associated
density of states for the photon gas. For now I’ll ignore terms relating to the factor of 1/2
above, since we usually only care about (or can detect!) energy differences. Taking into
account the fact that photons can come in two polarization states, one eventually gets

g(ω)dω =
V ω2

π2c3
dω.

Combing these results, we get that

lnZ =

∫ ∞
0

dωg(ω) logZω = − V

π2c3

∫ ∞
0

dω ω2 ln
(
1− e−β~ω

)
. (6.63)

From this we can get, e.g., the energy stored in the photon gas:

E = −∂ lnZ

∂β
=

V ~
π2c3

∫ ∞
0

dω
ω3

eβ~ω − 1
=

V

π2c3

(kBT )4

~3

∫ ∞
0

dx
x3

ex − 1
. (6.64)

That last integral can be explicitly evaluated (with some work), with the end result

E

V
=

π2k4
B

15~3c3
T 4. (6.65)

98Of course, you know that photons aren’t conserved, since you demonstrate their non-conservation every
time you change the state of a (functional) light switch
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The free energy F = −kBT lnZ can be calculated; integration by parts (to take care of
the log inside the integral) gets us to

F = − V π2

45~3c3
(kBT )4, (6.66)

from which we can calculate, e.g., the pressure due to electromagnetic radiation as

P = − ∂F

∂V

∣∣∣∣
T

=
E

3V
=

4σ

3c
T 4,

where

σ =
π2k4

B

60~3c2
= 5.67× 10−8 J

sm2K4

is the Stefan99 constant.
I haven’t really emphasized the precise way that the classical version of the above cal-

culation fails, as I’m sure you’ve seen it before. Briefly, classically we should think that the
Hamiltonian for the EM field can be written in terms of the normal modes characterized by k,
so that the energy looks like a collection of independent harmonic oscillators corresponding
to photons of different wave-number and polarization. Classically, though, there is no limit
on the size of k, leading to the ultraviolet catastrophe: we assign kBT/2 of equipartitioned
energy to each independent quadratic mode of H, leading to an infinite amount of energy
stored in the high-frequency modes. This is... not physical.

6.8 Problems

6.8.1 Momentum correlations in an ideal gas

In class we (hastily!) talked about deriving the unconditional probabilty of an ideal gas
particle having some momentum by integrating over the full probability distribution (which
came directly from the central postulate). What about two-particle correlations?

(A) Find the unconditional probability for two particle positions, ρ(~q1, ~q2).
(B) Find the unconditional probability for two particle momenta, ρ(~p1, ~p2).

6.8.2 Microcanonical two-level system

Consider N non-interacting two-state particles (for instance, impurity atoms trapped in a
solid matrix), where each particle has a fixed position (so that they have no kinetic energy,
and they are distinguishable). Each particle can be in either the “spin up”/“excited” state,
which costs energy ε, or in the “spin down”/“ground” state, which costs zero energy. So, at
energy E there are N1 = E/ε excited states.

What is the microcanonical normalization factor, Ω(E,N)? What is the en-
tropy? What is the heat capacity, C = dE

dT
?

99Josef Stefan, who used his law to (for the first time?) calculate a reasonable temperature for the surface
of the sun [50]
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Note, by the way, that the heat capacity you derived vanishes extremely quickly
as T → 0. In most materials, the contributions of spins to the heat capacity is
dwarfed by other contributions (e.g., phonons, or conduction electrons in metals).
In some materials, though, one can detect contributions of the form you derived;
the extra contribution is called the Schottky anomaly.

6.8.3 Harmonic oscillators

Your friend hands you a collection of N harmonic oscillators100, each of which has energy
eigenvalues (n+ 1/2)~ω for n = 0, 1, 2, . . ..

Part A:

In the limit that N is large, derive an expression for the number of ways of
partitioning a total amount of energy E among the N harmonic oscillators.

Part B:

What is the volume of phase space corresponding to states with energy in the
range R±1/2? In the asymptotic limit, compute the volume of the relevant shell
in 2N -dimensional space, and show that the volume per state is hN .

6.8.4 Energy fluctuations in the microcanonical ensemble

In deriving the laws of thermodynamics we exploited the fact that when bringing two sub-
systems together with energies E1 and E2 = E − E1 we could assume that an in-principle
complicated sum could be approximated by just picking out the single biggest term:

Ω(E) =

∫
dE1 Ω1(E1)Ω2(E − E1) ≈ exp

(
1

kB
(S1(E∗1) + S2(E∗2))

)
.

(A) An expression for the equilibrium fluctuations: Consider the probability that

subsystem 1 has energy E1, p(E1) = Ω1(E1)Ω2(E−E1)
Ω(E)

. Taylor expand the numerator101 about
the value E∗1 , using the fact that when the two subsystems are in equilibrium they have the
same temperature, to show that the energy fluctuations of system 1 are Gaussian. What is
the variance, σ2

E1
, of that Gaussian? Assuming that both S and E are proportional to N ,

how do the energy fluctuations per particle, σE1/N , scale with N?
(B) Fluctuation-response formula Juggle some derivatives around to show that

1

kB

∂2S

∂E2
= − 1

kBT

1

NcvT
,

100“friend” – who would do such a thing?!
101Consider how exponentially large numbers work – should you do a taylor expansion of the exponential

or the argument of the exponential?
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where cv = 1
N

∂E
∂T

∣∣
V,N

, the energy per particle needed to change the temperature. This

should be thermodynamically straightforward. But it’s interesting! This is an example of
a “fluctuation-response” relation – normally you think of measuring the specific heat (CV )
by adding some energy to your system and measuring the temperature. This kind of formula
suggests that you can also measure it by simply measuring the equilibrium fluctuations of
the energy of the system102; it’s something we’ll see more of later in the course.

6.8.5 Ideal relativistic gas

Consider an extreme, but ideal, relativistic gas composed of N indistinguishable particles
whose kinetic energy per particle is not p2

i /(2m) but rather pc. Show that the partition
function in the canonical distribution is

Z(T, V,N) =
1

N !

[
8πV

(
kBT

hc

)3
]N

.

From the partition function you can derive thermodynamic relationships. Show that

PV = E/3, E/N = 3kBT, PV γ = constant.

Note that, given a partition function, one can calculate the density of states g(E), where
g(E)dE counts the number of states in a range dE near the energy E for the system, as the
inverse Laplace transform of the partition function Z(β):

g(E) =
1

2πi

∫ β′+i∞

β′−i∞
eβEZ(β)dβ =

1

2π

∫ ∞
−∞

e(β′+iβ′′)EZ(β′ + iβ′′)dβ′′,

where we’re treating β = β′+iβ′′ as a complex variable and, since β′ is positive the integration
path is parallel and to the right of the imaginary axis. For this problem what is the density
of states?

6.8.6 Biased random walk

Consider an ideal random walk in which each step direction is i.i.d. uniformly distributed
over the unit sphere, in which one end fixed is fixed (at the origin) and there is someone
pulling on the other end with force F = f ẑ. Letting R stand for the end-to-end vector of
the chain and ri for the vector corresponding to step i, the the work due to this external
force is W = F ·R = f ẑ ·

∑
i ri. Every conformational state of the random walk costs zero

energy otherwise.

• Write down an expression for the partition function in the ensemble where
you specify N and the force F . Given the independence of the steps, you may find
it helpful to first find the partition function for a single step.

102The fluctuations might be teeny-tiny if N is Avogadro’s number, but this can be incredibly useful when
doing smaller computer simulations, or when looking at (e.g.), colloidal experiments.
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• Now that you have a partition function, use it to find the average end-to-end
distance for a given external force: 〈R〉

Rmax
. Your function should behave something

like the curve in Fig. 6.2; this simple estimate, together with an improved theoretical
treatment, is the core of a famous paper in biophysics.

6.8.7 Differences in specific heats, again

Show that in general we can write

CP − CV = −k
[
∂
∂T

(
T ∂ lnZ

∂V

∣∣
T

)]2
V

∂2 lnZ
∂V 2

∣∣
T

.

From there, prove that (CP −CV ) is always positive. Verify that the value of this difference
for an ideal gas is kBN .

6.8.8 Equilibration between positive- and negative-temperature
systems

A systems of N1 spins at negative temperature and positive energy is brought into ther-
mal contact with an ideal gas of N2 particles. What is the character of the state to which
this combined system eventually comes to equilibrium? Is the final temperature positive or
negative? Does your answer depend on the ratio N1/N2?

6.8.9 Statistics of sub-systems

Suppose you have a system of total volume V0 which contains N0 particles. In this problem
we’ll think about the behavior of sub-sets of this system.

First, assuming that the positions of the particles are uncorrelated with each other,
calculate the probability P (N, V ) that a region of volume V located somewhere inside V0

has exactly N particles.

Part A:

Show that 〈N〉 = N0p and
√
〈N2〉 − 〈N〉2 =

√
N0p(1− p) for p = V/V0
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Figure 6.2: Force vs extension curves for
97004-basepair DNA in 10 nM Na+ (points),
and the functional form of what what your an-
swer should look like (curve). Figure modeled
after Ref. [51].
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Part B:

Show that if both N0p and N0(1−p) are large numbers, expand about the average
value of N to show that P (N, V ) has approximately a Gaussian form.

Part C:

If p� 1 and N/N0 � 1, show that P (N, V ) has the form of a Poisson distribu-
tion,

P (N) = exp(−〈N〉)〈N〉
N

N !
.

6.8.10 Adsorption of surfactant molecules

Dilute solutions of surfactants can be approximated as ideal gases. The surfactant molecules
can reduce their energy by coming into contact with air (or other porous media – such as
polymers and gels – that have an affinity for them), and at a solution-air interface the fraction
of molecules at the surface then behave like a two-dimensional gas. Let’s think about this
dimensionally-dependent problem a bit more

Part A:

Consider an ideal gas of indistinguishable classical particles of mass m in d di-
mensions, in a uniform external potential of strength εd. What is the canonical
partition function, Zd(N, V, T )? Show that the chemical potential is

µd = εd − kBT ln

[
Vd
Ndλd

]
, where λ =

h√
2πmkBT

Part B:

Suppose a surfactant lowers its energy by ε0 by moving from the bulk of the
solution to the surface. What is the ratio of particles at the d = 2 surface relative
to the d = 3 bulk?

Hint: it may help to write the d-dimensional grand canonical partition function
Q, and then to use the relation 〈Nd〉 = kBT

∂ lnQ
∂µ

.

Part C:

Gels are typically formed by cross-linking linear polymer molecules together, and
it is often asserted that porous gels should be viewed as having a fractal-like
structure. This suggests viewing surfactant adsorption as a gas in df -dimensional
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space, where df is some non-integer dimension. From your result to Part B above,
is it possible to test the above assertion by comparing as a function of temperature
the relative amount of adsorption of (a) surfactants to the gel and (b) surfactants
to the same amount of individual (linear) polymers before cross-linking?

6.8.11 A gas of magnetic atoms

Suppose you have an ideal gas of “magnetic” particles that don’t interact with each other but
have a usual kinetic energy and are also coupled to an external potential so that each atom
can have magnetic potential energy equal to µBH or −µBH, depending on the orientation
of the particle relative to the applied field H.

What is the grand partition function? What is the expression for the
magnetization of the system? What is the entropy? Also, given your
expression for the entropy, how much heat will be given off by the system if
the field were reduced from H to zero at constant V and constant T?

6.8.12 An ideal gas in a confining potential

In this problem we are studying a gas of N classical, indistinguishable, non-interacting
particles in a gravitational field, with

Ug(x, y, z ≥ 0) = mgz,

where the constant g > 0, and the gas is confined in a semi-infinite vertical container of
cross-sectional area A (i.e., the z-coordinate of every particle must be between zero and
positive infinity, and the x and y coordinates are confined to some shape of area A).

For this system at temperature T , what is the canonical partition function? What
is the Helmholtz free energy? What is the entropy? What is the internal energy?
What is the heat capacity?

6.8.13 A different ideal gas, in a different confining potential

This time we have have N classical, indistinguishable, non-interacting particles in a harmonic
trap. The Hamiltonian is

H =
∑
i

(
~p2
i

2m
+ a~r2

i

)
.

(A) What is the canonical partition function? What is the internal energy?

(B) What is the grand canonical partition function? What is the expectation
value for the number of particles, 〈N〉?
(C) What is the isothermal compressibility, κT = − 1

V
∂V
∂P

∣∣
T

? In answering this
question, it may be helpful to find a Maxwell relation connecting the partial
derivatives in the definition of κT with partial derivatives that are easier to cal-
culate. The Gibbs-Duhem relation may be helpful.
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6.8.14 Number fluctuations in the grand canonical ensemble

When studying number fluctuations we said we could use “some thermodynamic relation-
ships” to write

〈N2〉c
〈N〉2

=
kBT

V
κT , (6.67)

where κT is the isothermal compressibility. Fill in the missing steps to actually derive this
equation.

6.8.15 Computers, partition functions, and thermodynamics

Computer simulations are (I’m sure you know) an important tool in physics these days;
there are a few typical modes they are used in. Sometimes, simulations are used simply as
numerical platforms to conduct experiments. Other times they are used because calculating
partition functions analytically is almost always difficult. In this problem we’ll be using
an online computer simulation of the 2D Ising model to get a flavor for this second mode
of working with numerics. The Ising model that we’ll look at here consists of many spins,
σi = ±1, arranged on a square lattice. The Hamiltonian is

H = −J
∑
〈ij〉

σiσj −H
∑
i

σi,

where “
∑
〈ij〉” indicates a sum over the four nearest neighbors on the lattice of each spin, J

is a coupling constant, and H is an external field. Thermodynamically, H is a generalized
force which is conjugate to the magnetization, M =

∑
i σi. As is typical, we’ll work in units

where J = 1 and kB = 1 (i.e., we’re measuring both energies and temperatures in units of
the coupling constant). As you know, the partition function is

Z =
∑
µ

e−βH(µ).

Since we are fixing the spins to their lattice sites, each microstate is simply a specification
of every spin...thus, there are 2N microstates that in principle we need to sum over. Perhaps
you begin to see the issue: how can we possibly make analytic progress in evaluating this
sum of Boltzmann factors over an exponentially large number of terms103?

So, instead of solving this analytically, we’ll explore tools used to statistically sample
the configurations which contribute the most to the partition function. The methods used
will not be our focus (if this were a computational physics class they would be), but if you
want to know more I’m happy to chat! For this whole exercise you’ll be using the javascript
simulation on this page: http://mattbierbaum.github.io/ising.js/

A [Computational] First, just spend a few minutes playing around with the
simulation. Next, as a first exploration of the simulation, give me an estimate

103Actually, in 1 and 2 dimensions there are clever tricks you can play to analytically solve this model!
Onsager’s 2D square lattice Ising model solution is the calculation I have most frequently heard referred to
as a “mathematical tour de force.” But in general... It should feel daunting, and it is.

http://mattbierbaum.github.io/ising.js/
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the critical temperature at zero field, which is to say, the largest temperature at
H = 0 for which there is still a net magnetization.

B [Pencil and paper] From the definition of the partition function, show that the
average magnetization is given by

M = − ∂F

∂H

∣∣∣∣
T

,

where F = −kT lnZ. Derive a formula for the susceptibility,

χ =
∂M

∂H

∣∣∣∣
T

,

that can be expressed in terms of the moments and/or cumulants of M . Do a
similar calculation (mostly contained in the lecture notes) connecting the specific
heat and moments and/or cumulants of the energy.

C [Computational] Test your formulas for H = 0 and T = 4 by first computing
the relevant moments and/or cumulants at those values of field and temperature.
Next, compare your answer to just directly taking a numerical derivative (i.e.,
vary the field by some small ∆H or the temperature by some small ∆T ). In this
problem, you should definitely make use of the fact that you can download data
for a simulation directly from the website. Two caveats: (1) when analyzing data,
make sure you let the system equilibrate first, (2) notice that the website outputs
the averages of functions of intensive versions of the energy and magnetization
(e = E/N , m = M/N) – adjust your formulas / expectations accordingly!

6.8.16 Triplet oxygen partition function

“Triplet oxygen” refers to the most stable form of an O2 molecule. O2 has two unpaired
electrons and hence four independent spin states, and exchange interactions split these four
spin states into the singlet state (with total spin s = 0) and the triplet state (with total spin
s = 1); the triplet state is the energetically favorable one.

So, in the triplet state the spin sz is quantized to be either sz = −1, sz = 0, or sz = 1.
Suppose we put an ideal (non-interacting) gas of N molecules of triplet oxygen in a magnetic
field of strength B pointing in the ẑ direction, all in a box of total volume V . The Hamiltonian
is

H =
∑
i

(
~p2
i

2m
− µBszi

)
,

where µ here is just the magnetic permeability (i.e., has no bearing to the µ which is the
chemical potential).

Part A:

Treating the positions and momenta of the molecules classically, keeping track of the quan-
tized spin, and ignoring any other degrees of freedom that might exist in the problem,
calculate the canonical partition function Z(N, V, T,B).
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Part B:

At a given temperature, what fraction of the molecules do you expect to find in each of the
sz = {−1, 0, 1} states?

Part C:

What is the average magnetic moment, 〈M〉, where M = µ
∑

i s
z
i ?

Part D:

What is the magnetic susceptibility, χM = ∂〈M〉
∂B

, in the limit of zero field?
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Part III

Interacting systems, phase transitions,
and of out-of-equilibrium statistical

physics
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Chapter 7

Interacting systems: Perturbative
approaches

The truth is that most things that are interesting are not ideal, but that makes it hard to
calculate.104

So far we have almost exclusively focused on ideal systems, that is, systems in which the
degrees if freedom did not interact with each other via interparticle potentials. This sim-
plification helped us more clearly understand the structure of our statistical descriptions of
macroscopic systems (and, helpfully, let us solve everything analytically) – and for quantum
mechanical systems we even saw that non-interacting Bose and Fermi systems can exhibit
rich/interesting behaviors.

However. Interactions are responsible for the amazing variety of phases of matter and ma-
terial behaviors! Since most physical systems that we encounter cannot be described without
considering interactions, in this chapter and the next we’ll figure out how to incorporate in-
teractions into our statistical mechanical formalism. This chapter will focus on systematic
expansions, in which an idealized, non-interacting system serves as a useful starting point.
Implicitly, for instance, throughout the next sections you can imagine that we’re trying to
move from thinking about an ideal classical gas to a dilute classical gas.

7.1 From moment expansions...

Let’s return to the idea of a classical system105 and start with a general Hamiltonian in the
absence of an external potential:

H =
N∑
i=1

p2
i

2m
+ U ({r}) ,

where we’ve written a general interaction potential, U , which could be an arbitrary function
involving the spatial coordinates of the particles.

104“With thermodynamics, one can calculate almost everything crudely; with kinetic theory, one can
calculate fewer things, but more accurately; and with statistical mechanics, one can calculate almost nothing
exactly” – Eugene Wigner, [52].

105With our corrected phase-space measure
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In the canonical ensemble the partition function would be

Z(N, V, T ) =
1

N !h3N

∫ (∏
i

d3pid
3ri

)
exp

(
−β

N∑
i=1

p2
i

2m

)
e−βU({r})

=
1

N !

(
V

λ3

)N ∫ ∏
i

d3ri
V

e−βU({r}), (7.1)

where in the second line we’ve done the integral over momenta and taken the liberty of
multiplying and dividing by N copies of the system volume V . We’ve done this because now
we see terms directly related to ideal, non-interacting quantities. The prefactor is just the
ideal gas partition function, and the integral is like doing an average over particle positions
where there are no correlations between the particle positions – exactly as if the positions
were those from an ideal gas with no interactions. Using the notation where a subscript
(0) refers to these ideal-gas like quantities or averages, we can write the canonical partition
function as

Z(N, V, T ) ≡ Z(0)(N, V, T )
〈
e−βU({r})〉

(0)
(7.2)

= Z(0)

∑
l

(−β)l

l!

〈
U l
〉

(0)
. (7.3)

This looks like a moment-based perturbative description of a system: when U = 0 we recover
the ideal gas which we know how to solve, and when U 6= 0 we can perhaps calculate
corrections systematically. As we’ll see shortly, this direct moment-based expansion is often
not especially useful: at short ranges there are often strong repulsions (Pauli exclusion,
or hard-core repulsion between particles, or... ), so the moments of U need not be small.
Nevertheless, working with this will lead us to an expansion which is useful.

7.2 ... to cumulant expansions...

We know that what we often want to work with is the log of the partition function, so let’s
replace our moment expansion with a cumulant expansion: we see above that Z is acting
like a generator of moments, so taking the log gives us a generator of cumulants106:

logZ = logZ(0) +
∞∑
l=1

(−β)l

l!

〈
U l
〉
c(0)

. (7.4)

At this point we specialize the form of the interparticle potential away from complete gen-
erality, and study potentials, φ that are pairwise in nature,

U =
∑
i<j

φ (ri − rj) ≡ φ (rij) , (7.5)

106We’ll need an occasional gross double subscript as a result of this notational choice, but we’ll reap the
benefits overall.
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where we’ve introduce the notation rij to represent vector separations between pairs of
particles, which we’ll be seeing a lot of in the next sections.

Writing out the first few terms of this cumulant expansion, we have

logZ = logZ(0) − β 〈U〉(0) +
β2

2

(〈
U2
〉

(0)
− 〈U〉2(0)

)
+ · · · (7.6)

Let’s evaluate these first few cumulants for our pairwise potential.

7.2.1 First cumulant

The first cumulant is quite straightforward, recognizing that for each pair of particles we
pick as the interacting pair we’re going to get copies of the same result:

〈U〉(0) =
∑
i<j

∫ (∏
α

d3rα
V

)
φ(ri − rj)

=
N(N − 1)

2

∫
d3r1

V

d3r2

V
· · · d

3rN
V

φ(r1 − r2)

=
N(N − 1)

2V

∫
d3rφ(r), (7.7)

where in the last line we’ve let r = r12. There you go: someone hands you a particular
interparticle potential (Lennard-Jones, or screened Coulomb, or...), and you go off, calculate
an integral, and you’ve got the first term in the cumulant expansion.

7.2.2 Second cumulant

Let’s write out the second cumulant as〈
U2
〉
c(0)

=
∑
i<j
k<l

[
〈φ(rij)φ(rkl)〉(0) − 〈φ(rij)〉(0) 〈φ(rkl)〉(0)

]
. (7.8)

This is a sum over
(
N(N−1)

2

)2

total terms, and it is helpful to divide those into three classes

of terms:

All particle labels are distinct, i.e., i, j, k, l are all different indices. In this case we can
look at the second moment and see

〈φ(rij)φ(rkl)〉(0) =

∫ (∏
α

d3rα
V

)
φ(rij)φ(rkl)

=

(∫
d3ri
V

d3rj
V

φ(rij)

)(∫
d3rk
V

d3rl
V

φ(rkl)

)
= 〈φ(rij)〉(0) 〈φ(rkl)〉(0) . (7.9)

Thus, these terms do not make any contribution to 〈U2〉(0).
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One particle label is shared i.e., we have i, j, k = i, l as the four labels. We can make a
similar argument for neglecting this class of terms, too. We first write

〈φ(rij)φ(ril)〉(0) =

∫
d3rid

3rjd
3rl

V 3
φ(rij)φ(ril), (7.10)

and then change variables in the integration from ri, rj, rl to ri, rij, ril . This leaves us with

〈φ(rij)φ(ril)〉(0) =

∫
d3rid

3rijd
3ril

V 3
φ(rij)φ(ril) = 〈φ(rij)〉(0) 〈φ(ril)〉(0) , (7.11)

which again means these terms do not contribute to 〈U2〉(0).

The same pair is considered twice i.e., i = k, j = l. Well, the second cumulant doesn’t
vanish, and these are the remaining terms which we do need to keep track of. There are
N(N−1)

2
terms of this form, and they all contribute identically. Thus, our complete expression

for the second cumulant is〈
U2
〉
c(0)

=
N(N − 1)

2

[∫
d3rij
V

φ2(rij)−
(∫

d3rij
V

φ(rij)

)2
]
. (7.12)

7.2.3 Cumulant expansion of the partition function

So far, we have the following expansion for the log of the partition function:

logZ = logZ(0)+
N(N − 1)

2

[
−β
∫

d3r

V
φ(r) +

β2

2

(∫
d3r

V
φ2(r)−

(∫
d3r

V
φ(r)

)2
)

+ · · ·

]
+· · · .

(7.13)
We now consider the thermodynamic limit, V,N →∞, and we find

logZ ≈ N log

(
V e

Nλ3

)
+
N2

2V

[
−β
∫

d3rφ(r) +
β2

2

∫
d3rφ2(r) + · · ·

]
. (7.14)

If we now, for instance, want to know the pressure of our system, we take the appropriate
derivative and find

βP =
∂ logZ

∂V
(7.15)

=
N

V
− 1

2

(
N

V

)2 [
−β
∫

d3rφ(r) +
β2

2

∫
d3rφ2(r) + · · ·

]
+O

((
N

V

)3
)
.

What have we done? We’ve basically written the equation of state of the system as a per-
turbation organized in powers of density, where the contribution at each order in density is
a sum over a series of terms involving integrals of powers of the pairwise potential.

As written, this sort of cumulant expansion is still not very helpful. Why? Because for
typical interactions there are large forces keeping molecules apart. For instance, one common
potential is the Lennard-Jones potential:

φ(r) = 4ε

[(σ
r

)12

−
(σ
r

)6
]
, (7.16)
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Figure 7.1: Lennard-Jones potential and the corresponding Mayer f-function The
potential, φ, is shown as a solid black line and the corresponding f = exp(−βφ)−1 is shown
as a dashed blue line.

where ε is related to the depth of the potential well and σ to the range over which the
repulsion is felt. 107

With such a potential, we see that each integral in the series of series we wrote about
diverges ! This is, on its face, not such a good perturbation theory. Before we integrate each
term and despair, though, let’s do two things. First, let’s assume that the perturbative series

in density is still okay; for a dilute gas we’ll go ahead and truncate at order
(
N
V

)2
. Second,

lets sum the series first:

−β
∫

d3rφ(r) +
β2

2

∫
d3rφ2(r) + · · · =

∫
d3r

[
−βφ+

β2

2
φ2 − β3

3!
φ3 + · · ·

]
=

∫
d3r

[
e−βφ(r) − 1

]
≡

∫
d3rf(r), (7.17)

where in the final line we defined a new function (the Mayer f function) to stand for the
combination e−βφ(r)− 1. In Figure 7.1 I show a plot of the Lennard-Jones potential together
with the associated f(r): At short distances (where the potential is diverging) the f functions
converges to a value of −1, and at large distances (where the potential is vanishing) the f
function converges to 0. Indeed, for reasonable potentials integrals over these f functions are
perfectly well behaved, and we see that in our cumulant expansion we wrote down a series
in which every term individually diverges, but the sum of the series is something we can
evaluate!

Surveying our work in this section, we see that we tried to write down cumulant expansion
– a perturbative expansion in the potential – but that for reasonable potentials we ended up

107Where does this sort of potential come from? The attractive r−6 part comes from fluctuating dipoles of
electrically neutral atoms. Recall that if there were two interacting permanent dipole moments, p1 and p2,
the potential energy would scale as p1p2/r

3. There are no permanent dipoles for neutral atoms, but atoms
can acquire transient dipoles through quantum fluctuations. If the first atom has a transient dipole p1 it will
induce an electric field, which will in turn induce a dipole in the second atom p2 ∼ E ∼ p1/r3. The resulting
energy thus scales as p1p2/r

3 ∼ r−6; this is typically called the van der Waals attraction. The r−12 term is
meant to reflect the rapid transition to strong repulsion as the atoms get very close. The exact form is not
so important, and the common choice of a term like r−12 is simply a mathematical convenience.
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having to re-express our result in terms of these Mayer f functions. It seems like we would
have been better off – and could perhaps have made more systematic progress – had we been
able to expand in powers of f , rather than in powers of φ. The cluster expansion introduced
in the next section allows us to do exactly that!

7.3 ...to cluster expansions!

Now that we have a reason that we might want to find an expansion of the partition function
in powers of these f functions, let’s do so. We continue working with our Hamiltonian with
only pairwise interparticle potential,

H =
N∑
i=1

p2
i

2m
+
∑
i<j

φ(rij),

for which the canonical partition function is

Z(N, V, T ) =
1

N !λ3N

∫ (∏
α

d3rα

)∏
i<j

e−βφ(rij). (7.18)

In order to understand how to manipulate this expression into a useful expansion, our initial
goal of this section is going to be to transcribe Eq. 7.18 from math to pictures. We begin by
introducing the additional bit of notation, writing the Mayer f functions as

fij ≡ f(rij) = e−βφ(ri−rj) − 1.

Using this notation, let’s organize the terms in Z by how many powers of f they contain:

Z(N, V, T ) =
1

N !λ3N

∫ (∏
α

d3rα

)∏
i<j

(1 + fij)

=
1

N !λ3N

∫ (∏
α

d3rα

)1 +
∑
i<j

fij +
∑
i<j
k<l

fijfkl + · · ·

 (7.19)

7.3.1 Diagrammatic representation of the canonical partition func-
tion

To help us organize the many terms that appear in Eq. 7.19, let’s start representing integrals
with diagrams108. To my knowledge ([9], Chapter 10), this represents one of the earlier uses
of diagrams to organize terms in perturbative calculations [53, 54], pre-dating Feynman
diagrams by a handful of years. The way we’ll draw these diagrams is by (1) drawing N
points, and then (2) representing fij by a line connecting points i and j. According to this
prescription, an nth-order term in f corresponds to diagrams with n lines drawn.

108Recall, from the section on probability, how we used a similar approach to deal with the combinatorics
of relating cumulants to moments.
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Figure 7.2: The contribution of a graph is a product of the linked clusters, where
each unlinked point gives a factor of the volume. The geometrical details of how we draw
these is irrelevant, as indicated with the stick-person diagram.

An example of a diagram with 5 copies of f is shown in the top portion of Fig. 7.2. An
important observation is that the contribution of a particular diagram can be written as
the product of the linked clusters it contains (and where each point without a connecting
line contributes one power of the volume, V ). Another important observation is that every
diagram with the same structure contributes identically, i.e., independently of the labels ;
we’ll ultimately only need to care about the number of 1-clusters, 2-clusters, triangles, etc.,
in a diagram. The bottom portion of the figure further emphasizes that the way we draw
our diagrams (relative positions of points, geometric details) is completely irrelevant.

We now have a prescription for writing the terms in Eq. 7.19 as pictures, and now we
will organize those pictures in a particular way. We define cluster integrals,

bl ≡ Sum over contributions of all linked clusters of l points. (7.20)

Ultimately, these bl are the namesake of the cluster expansion we will construct by the end
of this section. The first few cluster integrals are shown in Fig. 7.3:

7.3.2 The cluster expansion

Let’s see why we care about these bl. First, consider a diagram in which we take N points
and partition it into n1 clusters of size 1, n2 clusters of size 2, and so forth (so, in the example
in Fig. 7.2, we would have n1 = N − 7, n2 = 2, n3 = 1, and n4 = n5 = · · · = nN = 0). This
defines a set of numbers of clusters of different sizes, {nl}. We noted above, though, that
every diagram that looks the same contributes the same amount, regardless of the labels
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Figure 7.3: Graphical representations of the first few cluster integrals

on the f ’s, so we are interested in the number of ways of choosing these sets of clusters of
various sizes109. Let’s call this number W ({nl}), which we can compute as

W ({nl}) =
N !∏

l nl!(l!)
nl
. (7.21)

How did we arrive at this expression? Our strategy was essentially to first pick any particular
partitioning into {nl} l-cluster. We first overcount everything by considering every possible
permutation of the labels, giving us the N ! in the numerator above. Having overcounted,
we now divide out to account for diagram symmetries. First, for each individual l-cluster,
we note that the permutations of labels within that cluster give the same diagram (e.g.,
a line from point 1 to point 2 is unchanged when the labels 1 and 2 are permuted); this
gives us a factor of (l!) for each of the nl clusters of size l. Additionally, we have to consider
permutations of labels that replace all of the labels of one cluster of size l with a different
cluster of size l (e.g., a line from point 1 to 2 and from 5 to 6 is unchanged when labels
(1 and 5) and (2 and 6) are permuted); this gives us the additional factor of nl! in the
denominator110.

With this counting of the number of different types of diagrams, we can write the canon-
ical partition function as

Z =
1

N !λ3N

∑
{nl}restricted

W ({nl})
∏
l

bnll , (7.22)

where the restriction is that every point has to be in a cluster,
∑

l lnl = N . From our
discussion of ideal quantum gases, this problem should feel familiar: we find ourself trying
to evaluate a canonical partition function involving a restricted sum; the restriction means

109Note that this problem of partitioning a large number, N , into sets of integers is an interesting math
problem. Look up, for instance, the Hardy-Ramanujan Asymptotic Partition Formula if you’re interested.

110I highly encourage you to get a feel for this by playing around. Try drawing, say, 5 or 6 points, break
them up into clusters of different sizes, and get a feel for the combinatorics.
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we cannot deal with the different cluster sizes independently, and hence is making our life
more difficult. In exactly the same way as before, this difficulty is lifted by moving to the
grand canonical ensemble.

So, we write down the grand partition function, noting that the sum over all possible
N of a restricted sum on the {nl} is equivalent to performing an unrestricted sum over the
{nl}:

Q =
∞∑
N=0

eβµNZN

=
∑
{nl}

1

N !λ3N

(
eβµ
)∑

l lnl N !
∏
l

bnll
nl!(l!)nl

=
∏
l

∞∑
nl=0

(
eβµ

λ3

)lnl bnll
nl!(l!)nl

. (7.23)

In the last line we recognize that we have written something like

∏
l

∑
nl

1

nl!
[· · ·]nl ,

which is just the expansion of an exponential. Thus, we find111

Q =
∏
l

exp

[(
eβµ

λ3

)l(
bl
l!

)]
, (7.24)

i.e.,

⇒ logQ =
∞∑
l=1

(
eβµ

λ3

)l(
bl
l!

)
(7.25)

Before we make use of this expression for the grand canonical partition function, it is worth
thinking for a moment about the graphical expressions we wrote for cumulants and moments.
The graphical interpretation of the above result is that the log of the sum over all graphs is
equivalent to the sum over only the connected clusters; this is known as the “linked cluster
theorem,” and frequently appears in diagrammatic perturbation techniques.

111if you’re comparing these expression with Pathria [2], or other texts, please note that different authors
use slightly different conventions in the definitions of the cluster integrals; in particular, sometimes the bl
account for the factors of l! in that divide it in the expressions I’m writing. Here I’m following Kardar’s
convention [3]
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7.4 Virial expansion for a dilute gas

We consider, now, a dilute gas, and our goal for this section is to write a virial expansion112

for the equation of state of the dilute gas, i.e., something of the form

βP = B1(T )
N

V
+B2(T )

(
N

V

)2

+B3(T )

(
N

V

)3

+ · · · , (7.26)

where we’ve written temperature-dependent coefficients Bi for the powers of density. For a
dilute gas we can certainly exploit the extensivity condition to write the grand potential as

− βG = logQ = −β (E − TS − µN) = βPV. (7.27)

Comparing the with Eq. 7.25 we note that, in fact, each cluster integral bl ∝ V . We thus
define a version of the cluster integrals with this volume dependence removed,

b̄l ≡
bl
V
,

in terms of which we can write the pressure as

βP =
∑
l

(
eβµ

λ3

)l
b̄l
l!
. (7.28)

At the same time, we know that, specifying the chemical potential µ in the grand canonical
ensemble we can compute the expected number density of particles as

n =
N

V
=

1

V

∂ logQ
∂ (βµ)

=
∑
l

l

(
eβµ

λ3

)l
b̄l
l!
. (7.29)

Simplifying the notation by writing a dimensional version of the fugacity, x ≡ eβµ/λ3, we
arrive at the equation of state for a dilute gas:

βP =
∑
l

xl
b̄l
l!

n =
∑
l

lxl
b̄l
l!
. (7.30)

This is... not exactly what we typically want: rather than an expression for pressure in terms
of number density, we have pressure in terms of the fugacity and number density in terms of
the fugacity. The situation is exactly the same as when we encountered the high-temperature
limit of ideal quantum gases, and our way forward will also be exactly the same.

112So-called because the virial equation of state can also be derived by thinking about the contribution of
the virial, G =

∑N
i qi · fi, to the pressure. This technical definition of the virial (related to the latin word

for “force” or “energy”) was given by Clausius in 1870, and the virial expansion of the equation of state is
typically credited to Kammerlingh Onnes, of superconductivity fame.
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So, we first write out the series expansion for n,

n = b̄1x+ b̄2x
2 +

b̄3

2
x3 + · · · (7.31)

Rearranging this, and noting that b̄1 = 1, we have

x = n− b̄2x
2 − b̄3

2
x3 − · · · , (7.32)

which we can self-consistently solve to any desired order by substituting the ith-order solution
for x into the (i+ 1)th-order expression. Starting with the first order approximation x1 ≈ n,
we get

x1 = n+O
(
n2
)

x2 = n− b̄2n
2 +O

(
n3
)

x3 = n− b̄2

(
n− b̄2n

2
)2 − b̄3

2

(
n− b̄2n

2
)3

+O
(
n4
)

= n− b̄2n
2 +

(
2b̄2

2 −
b̄3

2

)
n3 +O

(
n4
)
, (7.33)

and so on. We can now substitute this into the equation for the pressure; to get an expansion
correct to order i we use the xi expression obtained by the above procedure. So, for instance,
to third order we write (collecting all terms up to third order in the number density)

βP = b̄1x+
b̄2

2
x2 +

b̄3

3!
x3

= n− 1

2
b̄2n

2 +

(
b̄2

2 −
b̄3

3

)
n3 +O

(
n4
)
. (7.34)

In general, we have a result of the form

βP = n+
∞∑
l=2

Bl(T )nl, (7.35)

as desired! The first term, B1 = 1, reproduces the ideal gas result. The second term is

B2(T ) = − b̄2

2
= −1

2

∫
d3r

[
e−βφ(r) − 1

]
, (7.36)

which diagrammatically is −1/2 times what we drew as a line between two points. We
calculate the third term diagrammatically, as illustrated in Fig. 7.4, and find

B3(T ) = −1

3

∫
d3r12d3r13f(r12)f(r13)f(r12 − r13) (7.37)

That calculation – in which many of the diagrams cancel out – is representative of a
much more general result:

Bl(T ) = − l − 1

l!
d̄l, (7.38)
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Figure 7.4: Diagrammatic calculation of the third virial coefficient

where the d̄l represents a sum over all “irreducible clusters of size l.” These irreducible l-
clusters113 are those in which there are at least two independent and non-intersecting paths
that link every pair of nodes in the diagram. We can find these by considering the set of all
l-clusters and then discarding the “1-particle reducible diagrams,” those diagrams in which
the removal of one point leads to disjoint clusters.

We pause to note that actually computing Bl for l > 2 is typically114 a fairly unpleasant115

and not particularly rewarding task. We know (from Chapter 3) that computing higher
order terms in the virial equation of state does not improve our ability to understand what’s
going on near the phase transition, but it is worth commenting that it does allow one to
systematically estimate the critical point, i.e., where the phase transition actually happens
(in addition, of course, to more and more accurately describing dilute gases).

In the next section we’ll evaluate these sorts of virial coefficients for a “typical” gas, i.e.,
one governed by a potential similar to a Lennard-Jones form.

7.5 The van der Waals equation

To see how (or, indeed, if!) the sort of virial expansion we just worked out is useful, let’s
consider just the first correction to the ideal gas equation of state – the term involving B2(T )
– for the Lennard-Jones potential,

φ(r) = 4ε

[(σ
r

)12

−
(σ
r

)6
]
, (7.39)

which, again, is a simple but reasonable approximation to the interaction between two neutral
molecules separated by some distance r.

113Also called biconnected graphs, or a graph which is connected and non-separable: i.e., a graph in which
the removal of any one vertex leaves a connected graph behind.

114For a long time, B5 was basically the limit of what could be done for the Lennard-Jones potential.
Recent advances in Monte Carlo sampling techniques of the relevant integrals [55] have let people accurately
go beyond that – at least to B16 – across a range of temperatures.

115After all, how many different integrals do you need to evaluate for d̄l? Here’s a link to the integer
sequence with the answer to that question for 3 ≤ l ≤ 19. Notice that, apparently, d̄19 requires evaluating of
order 2.46× 1034 terms!

https://oeis.org/A002218
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7.5.1 The second virial coefficient for a Lennard-Jones interaction

The most straightforward thing we could do is simply to use the definition of the second
viral coefficient we just derived:

B2(T ) =
−1

2

∫
d3r

(
e−βφ(r) − 1

)
= −2π

∫
dr r2

(
e−βφ(r) − 1

)
. (7.40)

That integral looks unfamiliar, but one can express the answer in terms of the Kummer
confluent hypergeometric function116

1F1(a; b; z), and the Gamma function:

B2(T ) =
−πσ3 (βε)1/4

3
√

2

[
Γ

(
−1

4

)
1F1

(
−1

4
;
1

2
; βε

)
+ 2
√
βεΓ

(
1

4

)
1F1

(
1

4
;
3

2
; βε

)]
(7.41)

Is this helpful? This is, indeed, what you get by plugging things into, e.g., Mathematica,
and you could plot the behavior of this second virial coefficient as you vary the temperature
for various values of the Lennard-Jones parameters. This “plug-and-chug” approach, while
technically correct, obscures the physical picture of how we expect a dilute gas to behave.

7.5.2 Approximate but physical treatment of B2

Let’s do a better job of capturing the physics by making a rougher approximation for the
molecular interactions. In particular, let’s replace the Lennard-Jones potential with the func-
tion

φ(r) =

{
∞ r < σ

−ε
(
σ
r

)6
r > σ

. (7.42)

This approximate potential captures the following main features of the Lennard-Jones po-
tential: it has the van der Waals r−6 at large distances, it has an attractive well of depth ε at
short distances, and it is strongly (in fact, infinitely !) repulsive within a characteristic size of
the molecular core. Note that this simpler form makes it clear that σ is like the characteristic
diameter of one of the interacting molecules.

With this simpler potential we can compute the second virial coefficient as

B2(T ) = −1

2

∫
d3r

(
e−βφ(r) − 1

)
= −1

2

[
−4πσ3

3
+ 4π

∫ ∞
σ

dr r2
(
eβε(

σ
r )

6

− 1
)]

. (7.43)

The first term above reflects an excluded volume in the potential we have written down.
Keeping in mind that we are trying to describe a dilute gas at reasonably high temperatures,
let’s further approximate the second term by assuming βε� 1, that is, that we are at high

116As a series expansion, 1F1(a; b; z) =
∑∞

n=0
a(n)zn

b(n)n!
, where a(n) is the “rising factorial,” a(0) = 1, a(1) = a,

a(n) = a(a+ 1) · · · (a+ n− 1), etc.
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T relative to the well depth. We will use this approximation to write a series expansion for
the exponential of the potential:

eβφ − 1 ≈ βε
(σ
r

)6

+O (βε)2 .

With this approximation, the integral can be easily carried out:

B2(T ) = −1

2

[(
−4πσ3

3

)
+

4πσ3

3
βε

]
=

Ω

2
[1− βε] , where Ω =

4πσ3

3
. (7.44)

This is a nice, compact expression for the second virial coefficient: there is a small pertur-
bative effect at high temperatures that corrects an overall scale set by the excluded volume
of the molecules.

A few comments are in order, directed at the question of “when should this approximation
be reasonable?” Two obvious conditions stand out.

First, this is clearly meant to be a low-density expansion, but what we do mean by “low”
in this context? As with any series expansion, we want the ratio of consecutive terms to be
small, and the ratio of the correction to the ideal term is ∼ B2

ρ2

ρ
∼ Ω

ρ−1 . Note that Ω is

close to an atomic volume, so one can think of the above ratio as ∼ ρgas
ρliquid

. That is, when the

density of the system is such that the gas is close to liquifying, we should assume our series
approximation is insufficient.

Second, in our expansion of the attractive tail, we assumed that βε � 1. If βε & 1
for these attractive potentials, we could not have done a reasonable series expansion in the
first place. In general, for low temperatures the ground state of a system with attractive
interactions is not a gas, but a dense collection of molecules sticking together.

There is an additional consideration, which speaks to our ability to factor out the Ω term
in the series expansion we wrote. The fact that we could do this speaks to the sense that the
short-ranged part of the potential dominates the integral we had to do. In this context there
is a sense in which potentials which fall of faster than r−3 are “short ranged;” for potentials
like φ ∼ r−3 there are terms which are logarithmic in the size of the system, and for even
longer-ranged potentials the whole expansion fails.

7.5.3 The van der Waals equation

Finally, we can write down the equation of state based on our approximate treatment of the
second virial coefficient:

βP = n+
n2

2
Ω (1− βε)

⇒ β

(
P +

n2Ω

2
ε

)
= n

(
1 +

nΩ

2
+ · · ·

)
. (7.45)

Since we’re only being accurate to order n2 in the above expression, we’re free to re-write
the right-hand side as

n

(
1 +

nΩ

2
+ · · ·

)
≈ n

1− nΩ
2

+ · · · .
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Using this rearranging, we arrive at the van der Waals equation of state:

P =
NkBT

V − NΩ
2

− εΩ

2

(
N

V

)2

, (7.46)

which is often presented as(
P + a

(
N

V

)2
)

(V − bN) = NkBT.

7.6 Problems

7.6.1 Every picture an integral

In Section 7.4 of the lecture notes we showed that the second virial coefficient,

B2(T ) = − b̄2

2
.

This meant we only needed to evaluate a single diagram (the integral over a single f -
function). The third virial coefficient looked like it had more terms,

B3(T ) = b̄2
2 −

b̄3

3
,

but we showed that it could be re-written in terms of a single diagram (negative one-third
times “triangle” diagram, which stood for a particular integral). Expressed in terms of the
cluster integrals, the direct expression for the 4th virial coefficient is

B4(T ) = − b̄4

8
+

3

2
b̄2b̄3 −

5

2
b̄3

2.

That looks like a lot of pictures – i.e., integrals – to evaluate!

(A) Fortunately, we learned that when evaluating physical expressions that a lot
of those pictures cancel with each other and we really only need the sum over
one-particle irreducbile clusters of size l. So, without doing any work beyond
drawing pictures, tell me the number of different diagrams you actually need to
write down in order to evaluate B4(T ). Draw them for me.

Note: If you choose to answer this question “up to permutations of the labels,”
make sure you tell me how many diagrams of each type you get. For instance,
in the lecture notes I drew b̄3 as 4 diagrams; I also could have said it was the
complete triangle plus three permutations of “triangle missing one edge.”

(B) Choose any one of your diagrams from part (A), and write down the integral
expressions that this diagram corresponds to. (this answer should be a single line
– no evaluation or explanation needed)
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(C) We’ve seen that B1(T ) = 1, and that both B2(T ) and B3(T ) require evalu-
ating just a single diagram. In part (A) you calculated the number of diagrams
needed to calculate B4(T ). Based on this, and thinking about how these one-
particle irreducible clusters can be formed, please speculate on the general trend
here. How bad is the growth in the number of terms you need to calculate if you
wanted to know higher and higher virial coefficients, Bi(T )?

7.6.2 Terms in the cumulant expansion

In Section 7.2 of the lecture notes we looked at an interacting system and saw how the first
two cumulants contributed to a perturbation series for the equation of state as a function of
density, where the coefficient of each term in the density expansion was itself an expansion
in powers of β. This gave rise to terms that could be of order β2 or (N/V )2.

Write an expression for the third cumulant. By carefully considering the various cases
involving similar or different particle indices, determine how the third cumulant contributes
to the expansion of the partition function in powers of density and inverse temperature.

7.6.3 Virial expansion for a repulsive gas

Consider a classical gas of N indistinguishable particles that interact according to the fol-
lowing purely repulsive pairwise:

φ(r) =

{
k
(
1− r

σ

)
r ≤ σ

0 r > σ
.

That is: when particles are father than σ away from each other they don’t interact, and
otherwise they feel a linearly increasing potential as they approach.

(A)

I would like to know the equation of state of this system at high temperatures and relatively
low densities. Please perform a virial expansion, keeping terms up to order ρ2 and β2 (where
ρ = N/V and β = (kBT )−1, as usual) .

(B)

Suppose you wanted to find the critical point (for the liquid-gas transition) for this model –
i.e., the simultaneous values of the critical density, critical pressure, and critical temperature
– do you already have enough information? Why or why not?

(C)

In class (and in the lecture notes) we calculated the second virial coefficient for an ap-
proximate Lennard-Jones interaction and then did some manipulations (with the help of an
uncontrolled approximation) to the van der Waals equation of state. For this model, if you
didn’t want to make uncontrolled approximations, what additional terms (if any) would you
calculate so that you could find the critical point?
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7.6.4 Joule-Thomson for a dilute gas

The virial equation of state is

P

kBT
=
N

V
+B2(T )

N2

V 2
+B3(T )

N3

V 3
+ · · · ,

where the Bi were temperature-dependent coefficients that can be computed for any particu-
lar inter-particle potential. By doing perturbation theory (what we called an “order-by-order
expansion”), write a second-order expression for V as a function of T , P , N , and B2, to show
that the Joule-Thomson coefficient, µ equiv ∂T

∂P

∣∣
H

, can be written to this order as

µ =
N

CP

(
T
∂B2

∂T
−B2

)
.

Hint: the thermodynamic manipulations of Problem 1.8.9 may be helpful!

7.6.5 Radial distribution function and virial expansions

The radial distribution function, g(r), describes the probability of finding a particle in your
system at some position relative to that of a given reference particle. It is defined by first
considering the two-particle density,

ρ2(r, r′) =

〈∑
i 6=j

δ (r − ri) (r′ − rj)

〉
.

Assuming the system is translationally and rotationally symmetric, ρ2(r, r′)→ ρ2(|r− r′|),
and we define the radial distribution function (also called the “pair correlation function”)
by normalizing this by the square of the density ρ = N/V :

g(|r − r′|) =
ρ2(r, r′)

ρ2
.

A schematic cartoon and a plot of g(r) are shown in Fig. 7.5 This quantity plays an
important role, both as a characterization of the structure of fluids and because one can
expressions for thermodynamic quantities (pressure, energy, etc) in terms of the pair corre-
lation function: this permits an explicit link between microscopic structure and macroscopic
behavior. In this problem will explore a virial expansion approach to computing g(r) for
dilute gases117.

(A) Working in the grand canonical ensemble and from the definition of the
ensemble average, show that you can write the two-particle density function as

ρ2(r12) =
1

Q (µ, T, V )

∞∑
N=2

xN

(N − 2)!

∫
d3r3 · · · d3rN exp (−βU({r})) ,

117For working in dense regimes where this kind of perturbative approach doesn’t seem particularly ap-
pealing, see Hansen and McDonald, Theory of Simple Liquids [58] for a variety of ways for writing down
approximate theoretical treatments for the structure of dense liquid phases if you’re interested.
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Figure 7.5: Radial distribution function (Left) Counting particles with a shell of thick-
ness dr at a distance r away from a reference particle. In 3D, the probability of finding a
particle in such a shell, given that a particle is at the origin, is 4πρr2g(r)dr. (Right) The radial
distribution function for a Lennard-Jones fluid at some particular density and temperature.
[Both figures from wikipedia.]

where x = exp (βµ) /λ3

(B) Approximate the two-particle density by the first two terms in this sum (i.e.,
the N = 2 and N = 3 terms) and assume that U =

∑
i<j φ(rij) for some pair

potential φ. Noting that Q can also be written as a power series in x, show that
you can write this in the form

ρ2(r12) = e−βφ(r12)w (r12) ,

where w(r) is a function of x and integrals over various Mayer f functions. Make
sure you keep all terms up to order x3.

(C) Finally, using a low density expansion for x, show that you can write the
radial distribution function as

g(r) = exp (−βφ(r)) y(r),

Your function y(r) should be written in terms of the density and integrals over
various Mayer f functions. Keep all terms up to those linear in ρ.

7.6.6 A one-dimensional gas

In this problem we explore a 1d interacting model that can be solved exactly. Consider a gas
of (classical) particles confined to a line of total length L. We’ll imagine that each particle
has diameter σ, and that the particles have hard-core interactions – that is, φ(r) = 0 if
r > σ and φ(r) =∞ if r < σ. The particles are indistinguishable, and their positions can be
labeled with coordinates {xi}, where σ/2 ≤ x1 ≤ x2 · · · ≤ xN ≤ L− σ/2.

(A) Write down the definition of the canonical partition function, and be sure
to carefully write down the part associated with the allowed positions of the
particles, indicating the allowed ranged of integration.

https://en.wikipedia.org/wiki/Radial_distribution_function
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(B) Consider a change of variables such as yj = xj − (2j − 1)σ/2; by using
this (or something similar) to assist in evaluating integrals, what is the canonical
partition function Z(N,L, T )? What is the Helmholtz free energy?

(C) What is the pressure of this gas? If you wanted to write the equation of state
as a virial expansion, what would the virial coefficients, Bl(T ), be? What is the
isothermal compressibility?

(D) You have just done an exact calculation for the statistical mechanics and
thermodynamics of a 1D gas. Compare what you have learned about the phase
behavior of this system to the mean field behavior we studied for the van der
Waals gas.
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Chapter 8

Interacting systems: Variational
approaches

Introductory text

8.1 Mean field derivation of the van der Waals equa-

tion

We saw in the early chapters that the van der Waals equation does a reasonable job of
describing dilute gases and dense fluid phases, and as a mean field description of liquid-gas
critical behavior. These regimes feel very different from the kind of perturbatively dilute
limit we just used cluster expansion technology to derive. Let’s look at a very different way
– similar in spirit to our mean-field discussion of magnets in Sec. 6.4.3 – to approximate the
partition function.

So, rather than calculate order-by-order, let’s assume that the potential energy contri-
bution of a particle is computed based on its interactions with an average – and uniform –
background of particles. First, rather than specifying that we are working with a Lennard-
Jones pairwise potential, let’s just think of any potential which (1) has a “hard-core” com-
ponent for r < σ, (2) is sufficiently short-ranged, and (3) has some attractive part of the
potential, where the potential well has integrated area −u. In our approximation for the
Lennard-Jones potential, for instance, we would have −u = −εΩ. Next, we first consider the
actual (fluctuating) distribution of particle density,

n(r) =
∑
i

δ (r − ri) ,

in terms of which we could write the potential energy of our system as

U ({ri}) =
1

2

∫
d3rd3r′ n(r)n(r′)φ(r − r′). (8.1)

We now assume that the system has uniform density, and approximate n(r) ≈ n = N/V .

175
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Then the typical energy, Ũ , is

Ũ =
n2

2

∫
d3rd3r′φ(r − r′)

=
n2V

2

∫
d3rφ(r)

=
−un2V

2
. (8.2)

We substitute this average energy into Eq. 7.18 for the canonical partition function, and
we get

Z =
1

N !λ3N
exp

(
βuN2

2V

)∫ ∏
i

d3ri. (8.3)

If the particles had no hard-core repulsion we would be done, with each of the remaining
integrals contributing one power of V . Let’s approximately treat excluded volume effects to
first order in Ω/V : we first approximate the two-particle excluded volume interaction as∫ ∏

i

d3ri ≈ V (V − Ω) (V − 2Ω) · · · (V − (N − 1)Ω) . (8.4)

This naive approach to packing particles in a volume (“the first particle can go anywhere,
the second particle can go anywhere except in the excluded volume of the first, the third...”)
clearly neglects higher-order effects (i.e., consider two particles which are just outside of
each others excluded volume – in this configuration V − 2Ω is an incorrect estimate of the
volume available to a third particle), but is a good starting point when the densities are
relatively uniformly distributed. Now, consider all of the terms above in pairs chosen about
the center of the series: look at the product of the first and the last terms, and the second
and second-to-last terms, etc. Each of these products will look like

V 2 − ΩV (N − 1) +O(Ω2) ≈
(
V − NΩ

2

)2

,

where we have ignored any term of order Ω2, and set N ≈ N − 1. Since there are N/2 such
pairs, we approximate the whole excluded volume contribution by, we approximate each
product of pairs by ∫ ∏

i

d3ri ≈
(
V − NΩ

2

)N
. (8.5)

Combining this with our mean-field estimate of the effect of the attractions and the usual
momentum piece, then, our partition function is

Z(V, T,N) =

(
V − NΩ

2

)N
N !λ3N

exp

(
βuN2

2V

)
, (8.6)

from which we can compute the pressure as

βP =
∂ logZ

∂V
=

N

V − NΩ
2

− βu
2

N2

V 2

⇒ P =
NkBT

V − NΩ
2

− u

2

(
N

V

)2

. (8.7)
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This is precisely the van der Waals equation again! But here, rather than derive it in the
context of a perturbative expansion in the density and the temperature, we have derived
it in the context of an approximation of uniform density. And certainly a uniform density
approximation is the sort of thing we expect to be equally valid in both the gas and liquid
states (and probably not at the transition between the two!), hence why we expect that
we ought to be able to describe multiple phases with the same Hamiltonian and the same
partition function.

8.2 A variational view of mean field theories

Before we leave this chapter it is worth thinking more about the role of various models in
statistical mechanics. The above sections have probably118 given the impression that actually
carrying out the idealized program of statistical mechanics – taking a set of degrees of freedom
and their governing Hamiltonian, exactly evaluating the partition function, and deriving
thermodynamic quantities from there – typically ranges in difficulty from extraordinarily
hard to impossible. We can sometimes approximately solve some models, and there are a
small handful of particularly simple models that we can solve exactly.

Exactly solvable models have historically played an important role in statistical physics,
in no small part because these exactly solvable models can be used as building blocks in
approximate solutions to the systems we actually care about. Back in Sec. 6.4.3 we presented
a hand-waving “derivation” of the Curie-Weiss mean field equation of state for a magnet;
now we can show how this same mean field theory can in fact be understood much more
rigorously: it is the best possible mapping from the system we care about (here, the Ising
Hamiltonian with nearest-neighbor spin-spin interactions) to a system we can solve (in this
case, non-interacting spins in an external field). We’ll demonstrate this in two steps.

8.2.1 Bogoliubov inequality

Our strategy is going to be to approximate the true Hamiltonian governing our system, H,
with a simpler Hamiltonian that we are able to calculate quantities of interest, H0, in a
systematic way. Here we’ll derive a classical version of the so-called “Bogoliubov variational
theorem119” – a more general discussion and derivation that applies when H and H0 do not
commute is in Feynman’s text [57].

Let’s imagine defining a new Hamiltonian that interpolates between H0 and H as we
vary some parameter λ from zero to one:

H (λ) = H0 + λ(H−H0). (8.8)

The canonical free energy associated with this new Hamiltonian is, of course,

F (λ) = −β−1 lnZ = −β−1 ln
∑
µ

e−βH (λ,µ),

118and correctly!
119Seemingly named by Griffiths [56]
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where we have adopted the notation H (λ, µ) to mean the value of H (λ) in state µ. What
can we say about the behavior of F (λ) as λ is varied? Well, the first derivative is

dF (λ)

dλ
=

1

Z

∑
µ

((H−H0) exp [−βH (λ, µ)]) = 〈H −H0〉 , (8.9)

where we emphasize (to contrast with a result we are about to get to) that 〈· · · 〉 refers to
an average with respect to states weighted by the Boltzmann factor associated with H (λ).
Proceeding on, the second derivative is

d2F (λ)

dλ2
= −β

∑µ ((H−H0)2 exp [−βH (λ, µ)])

Z
−

(∑
µ ((H−H0) exp [−βH (λ, µ)])

)2

Z2

 .

A bit unwieldy, but this second derivative is just a difference between the second moment
and the square of the first moment, i.e., a variance!

d2F (λ)

dλ2
= −β

[〈
(H−H0)2〉− 〈H −H0〉2

]
= −β

〈
(H−H0)2〉

c
. (8.10)

We immediately deduce that this second derivative is non-positive for any value of λ.
Among other things, this tells us that as a function of λ, F (λ) can never be greater than the
straight line which is tangent to F (λ) at λ = 0:

F (λ) ≤ F (0) + λ

[
dF (λ)

dλ

]
λ=0

.

In particular, if we now evaluate this inequality at λ = 1 we recover Bogoliubov’s120 inequal-
ity121:

F ≤ F = F0 + 〈H −H0〉0 . (8.11)

That is: the free energy associated with a given Hamiltonian H is less than or equal to the
free energy associated with a (typically simpler) Hamiltonian H0 plus the average value of
the difference as calculated for states that are weighted according to the Hamiltonian H0.
It is this last clause that gives the inequality its applicability: for a sufficiently simple trial
Hamiltonian (say, one which contains no interactions between the degrees of freedom) it is
often much easier to evaluate ensemble averages with respect to H0 than it is with respect
to H.

8.2.2 Mean field magnets redux

The inequality above provides what is often the most elegant way of deriving mean field
theories. It says that the true free energy of the system is always less than (or, at best, equal
to) this funny combination of approximate free energy associated with a trial Hamiltonian.
Said another way, this gives us a prescription for choosing the best approximate Hamiltonian

120Sometimes, in slightly different form, called Gibbs’ inequality
121Shifting notation slightly, with F0 ≡ F (0).
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for our system: choose an H0 that lets you calculate things analytically, and then tune any
free parameters in H0 so as time minimize F . This makes the inequality in Eq. 8.11 as tight
a bound as possible, providing a quantitative measure of choosing an optimal simpler theory.
That is, our mean field free energy will be

Fmean field = minH0 (F0 + 〈H −H0〉0) . (8.12)

Let’s see this program in action as we approximate the nearest-neighbor Ising model Hamil-
tonian with the best possible non-interacting spin model. Our system Hamiltonian is

H = −J
∑
〈ij〉

sisj −B
∑
i

si,

and we will use the trial Hamiltonian

H0 = −Beff

∑
i

si.

We know from our work in Sec. 6.4 that these non-interacting systems are easy to work with,
and we immediately can write down the trial Hamiltonian’s free energy

F0 = −NkBT ln [2 cosh (βBeff )]

and the trial Hamiltonian’s magnetization per spin (for any of the spins) is

m0 = 〈si〉0 = tanh βBeff .

We next need to evaluate 〈H −H0〉0 which, again, denotes an average taken in the
ensemble defined by H0. We start by writing this definitionally:

〈H −H0〉0 =

∑
{si=±1}

(
−J
∑
〈ij〉 sisj −B

∑
i si +Beff

∑
i si

)
exp [βBeff

∑
i si]∑

{si=±1} exp [βBeff

∑
i si]

. (8.13)

We see that this all is just

〈H −H0〉0 = −J
∑
〈ij〉

〈sisj〉0 + (Beff −B)
∑
i

〈si〉0 , (8.14)

but we further note that H0 contains no interaction terms, so in fact 〈sisj〉0 = 〈si〉0 〈sj〉0 =
m2

0. For a lattice of N spins where each site has q nearest neighbors we count up the number
of terms in

∑
〈ij〉, and get

〈H −H0〉0 = −qJN
2

m2
0 +N(Beff −B)m0. (8.15)

Substituting our expression for m0, we finally have the free energy

F = −NkBT ln [2 cosh (βBeff )]−
qJN

2
tanh2 βBeff +N(Beff −B) tanh βBeff . (8.16)
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All that remains is to minimize this with respect to our choice of Beff . Taking a derivative
of F with respect to Beff and setting the result to zero, we find that the effective field must
satisfy

Beff = B + Jq tanh βBeff , (8.17)

From here we could insert this result into the expression for F above and simplify to get
our mean field free energy Fmeanfield. We could also cleverly exploit the definition of the
trial Hamiltonian’s magnetization per spin, m0 = tanh βBeff , to each side of the above
self-consistency condition:

Beff = B + Jq tanh βBeff (8.18)

⇒ B + Jqm0 = B + Jq tanh βBeff (8.19)

⇒ m0 = tanh (βB + βJqm0) , (8.20)

exactly the mean field equation of state we derived by quite different means back in Sec.
6.4.3. These variational approaches elegantly show how to map systems you care about to
the best possible non-interacting system. Very satisfying.

8.3 Problems

8.3.1 Surfactants and surface tension in the mean field approxi-
mation

Suppose we have a fluid interface of area A withN surfactant molecules – how does that affect
the surface tension of the fluid? Real surfactants are complicated molecules with complicated
interactions, but the essential mechanism of reducing surface tension is straightforward. This
question will lead you through a path very similar to the mean-field version of the van
der Waals equation, and remind you of the basic workings of conjugate thermodynamic
coordinates.

If we ignore the coupling of the surfactants with the fluid and assume the interface is
flat, the surfactants have a Hamiltonian

H =
N∑
i=1

p2
i

2m
+
∑
i<j

φ(rij),

where the position and momentum vectors are in 2D.

(A) Write down the canonical partition function Z(T,A,N) in terms of integrals
over the r and p (with the corrected phase space measure). The momentum
integrals should be pretty standard by now, so carry them out.

(B) For the rest of the problem, let’s assume that the pair potential is infinite for
rij < a and that

∫∞
a
dr 2πrφ(r) = −ε0. Separately estimate the total amount of

non-excluded area at the interface and the total potential energy of the system.
For the total potential energy, make use of the uniform density approximation,
n(r) ≈ n = N/A.



8.3. PROBLEMS 181

(C) From the above, write down the mean field approximation for the canonical
partition function, and from that the free energy.

(D) Holding other thermodynamic coordinates fixed, the work done in changing
the surface area of the system is dW = σdA. Assume that the total surface tension
of the fluid is a sum of σ0 (the surface tension of the fluid without surfactants,
which we will approximate as temperature-independent) and σs (the contribution
from the surfactant molecules). What is the total n- and T -dependent surface
tension, σ?

8.3.2 Problem 2

8.3.3 Problem 3

8.3.4 Problem 4
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Chapter 9

Critical behavior: the renormalization
group approach

All the way back in Chapter 3 we saw –although did not fully understand why – that
near a phase transition something remarkable happens. When considering, say, a transition
between the liquid and gas state we saw that totally different substances, made of completely
different microscopic constituents, exhibited the same behavior. For instance, all gases have
an isothermal susceptibility that diverges as they approach the temperature along the critical
isochore – κT ∼ |T − Tc|γ – with the same value γ = 1.237075 . . . characterizing all gases.
Even more remarkably, the same set of critical exponents describe the behavior of not only
all gases close to their critical point, but also ferromagnetic materials close to their Curie
point. Somehow these critical exponents define universality classes, allowing us to ignore
whole swaths of microscopic detail to collapse very different physical systems into the same
mathematical description.

Two major (and perhaps one “minor”) questions seemed especially pressing: Why do we
see this universality across different physical systems? How can we compute the critical expo-
nents defining a universality class? And relatedly, are the critical exponents all independent
from each other (so that we have to learn to calculate all of them), or are there relationships
between them that have to be satisfied (and if so, why?)?

We got a hint from Landau that the fundamental reason for this universality is related to
different systems sharing the same fundamental symmetries. But while the Landau approach
tentatively122 helped us make progress on that front, it predicted the mean field values of
the critical exponents and – even worse – with no way to systematically improve upon the
calculation to make more accurate predictions.

We also got a hint from Widom’s scaling hypothesis that the critical exponents should
not be thought of as independent... but why is this hypothesis valid? What new technique
/ idea / approach do we need in order to not only derive the scaling hypothesis, but also
compute the forms of the scaling functions and values gap exponents? We’ll begin answering
this question by discussing Kadanoff’s “block-spin” argument – a deep insight that teaches us
that in the face of a diverging correlation length we should shift our perspective substantially:

122“Tentatively,” because it still gave us quantitatively the wrong answers, so how confident in it should
we really be?
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Figure 9.1: A block spin transformation Here, 2d spins on the original lattice (left) are
grouped together into block spins, leading to N/2d new degrees of freedom on a lattice whose
lattice spacing is twice as big as the original lattice’s (right).

away from trying to understand the behavior of a specific Hamiltonian and instead thinking
about the relationship between the length scale over which we define our order parameter
and the coupling constants defining the Hamiltonian of the systems.

9.1 Kadanoff’s block spin argument

Up until now, we’ve been moving the goal posts back on what we need to understand to
really tackle critical phenomena. Widom taught us that we should figure out how to derive
a kind of static scaling hypothesis, and now Kadanoff123 is going to swoop in with a bold
change of perspective: rather than focus on choosing a particular level of description for a
problem124, we’ll think about how physics changes as we vary the level of description we
choose for our problem.

Here’s the basic idea. Suppose we start with a nearest-neighbor Ising model characterized
by N spins sitting on a lattice with lattice spacing λ, with Hamiltonian

βH1 = −K1

∑
〈ij〉

σiσj − h1

∑
i

σi. (9.1)

Here we define K1 = βJ , h1 = βB, and as usual σi = ±1 (and we’ll see why we wrote
“H1, K1, and h1” in just a moment). Now, if we take this model close to the critical point
we know that the spins will be correlated over some range given by the correlation length,
ξ. In some sense, if we pick a length scale which is some multiple of the lattice spacing, lλ,
then we can kind of think of spins on that larger length scale as “acting together,” as long
as λ� lλ� ξ.

Since we aren’t doing the full version, should probably replace the block spin definition
with the more intuitive one. This motivates what we will call a block spin transformation,

123From a time when people would write things like, “On the other hand, K̃ is perhaps a somewhat more
subtle beast” [59]

124e.g.: we decide on the level of description we want to apply to a problem – say, we’ll have a fluid made
up of classical point particles, or a gas made up of molecular dipoles, or we’ll think of the hard quantum
chemistry problems involved in magnetism and decide to treat it as discrete spins on a lattice – and we’ll
take that to describe our microscopic degrees of freedom, and (perhaps) not think too hard about how we
got to those degrees of freedom or whether we should have coarse-grained further
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schematically illustrated in Fig. 9.1. We imagine averaging together ld spins at a time into
new “block spin” variables, which we will denote by using capital subscripts:

σI =
1

〈σi〉I ld
∑
i∈I

σi, (9.2)

where

〈σi〉I =
1

ld

(∑
i∈I

∑
j∈I

〈σiσj〉

)1/2

.

From here, we will progress by making some courageous assumptions that are definitely
incorrect, but which are incorrect in a helpful way. In the words of Wilson, “In short the
Kadanoff block picture, although absurd, will be the basis for generalizations which are not
absurd125.”.

Courageous assumption 1

First, we boldly assume that we can write down a Hamiltonian for the block spin system
which looks the same as the original Hamiltonian:

βHl = −Kl

∑
〈IJ〉

σIσJ − hl
∑
I

σI , (9.3)

where σI = ±1. This is clearly wrong, in several different ways. For instance, we have assumed
that the spins within the block are all aligned either up or down, so that our block spins
are two-valued in the same way that the original spins were. Another issue: block spins that
are diagonally adjacent with each other have spins inside them that interact with a common
spin – this suggests that after block spinning we should also have some next nearest neighbor
interactions in addition to the nearest-neighbor ones in Eq. 9.3. That is, it sure seems like
the form of the Hamiltonian should change after the block spin transformation.

Well, we’re not calling it a courageous assumption for nothing. We next notice that the
new lattice spacing for our block spins is lλ, but the underlying physical system is the same.
This implies that ξl, measured in units of its own lattice spacing, is smaller than ξ1:

ξl =
ξ

l
. (9.4)

What does this mean? If the original system is close to the critical point and has, conse-
quently, some very large correlation length, then the block spin system will look like it is
farther from its critical point! That is, the block spin system will behave as though it is at
some different (larger) value of the reduced temperature tl and some new value of the effec-
tive field strength hl (the latter because of the way the field interacts with the combination
of spins forming the block, the former because of the way the block spins couple together
with a different Kl, which itself sets Tc).

125Ref. [60]
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Finally, we note that ifH1 andHl have the same functional form, then the functional form
of the free energy density126 should be the same, too! But, again, the underlying physical
system hasn’t changed – just how hard we are squinting our eyes when we look at it – so we
can go further and say

N/ldfs(tl, hl) = Nfs(t1, h1) ⇒ f(t1, h1) = l−df(tl, hl). (9.5)

Courageous assumption 2

Simplifying the actual argument in Kadanoff’s paper, we’ll frame the next courageous as-
sumption as:“ We want to understand power-law behavior near the critical point, so... maybe
near the critical point we have

tl = tlyt (9.6)

hl = hlyh , (9.7)

where both exponents yt and yh are positive?” Substituting the assumption into Eq. 9.5 we
get

fs(t, h) = l−dfs (tlyt , hlyh) . (9.8)

Up to now, we haven’t actually specified the scale of the transformation. Let’s make one
more assumption – that we have complete freedom in choosing this lengthscale l, and select
something which simplifies our expressions. We make the specific choice

l = |t|−1/yt ,

so that

fs(t, h) = |t|d/ytfs
(
1, h|t|−yh/yt

)
. (9.9)

From here, we define ∆ = yh/yt, α = 2 − d/yt, and Fs(x) = fs(1, x); doing so we see that
the above equation is actually

fs(t, h) = |t|2−αFs
(

h

|t|∆

)
, (9.10)

i.e., the starting point of the static scaling hypothesis!

Comments

Kadanoff’s block spin argument motivates the form of the scaling hypothesis, but we still
don’t know (a) just how bold our assumptions were, (b) what the scaling functions actually
are, or (b) how to actually calculate the exponents yt and yh that we just encountered.
We also haven’t really done anything to explain universality: in fact, the degree of validity
of some of those courageous assumptions above might actually depend on the microscopic
details; this feels like a step backwards in some ways.

126Or, at least, the part of the free energy density which is singular at the critical point
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The biggest assumption we made – that the transformed system’s Hamiltonian,Hl, looked
like it had the same form as the original one, H1 – both feels the most uncertain and contains
the key insight of the renormalization group. Namely: we should shift our focus from trying
to solve the entire problem all at once to, instead, trying to understand what happens as we
progressively remove more and more degrees of freedom from the problem and watch how
the Hamiltonian of the system evolves.

9.2 General formulation of the renormalization group

approach

We will now turn to Wilson’s renormalization group approach, generalizing and reformulating
Kadanoff’s picture; we will do some explicit calculations in the context of the 1-dimensional
Ising model and, following Niemeyer and van Leeuwen, on a specific 2-dimensional Ising
model.

Goal is not really to learn RG – we want to understand why it is an approach that
leads to scaling, can give non-trivial critical exponents, and why it could lead to singular
behavior, etc. We’ll have two simple real-space calculations, and gaussian momentum shell
formulation. Better to do this and then the 1D Ising model calculation, or the other way
around? For now I like this order, but in any event: clean this up, and remind the reader
what we did back when we talked about Kadanoff block spins. In the next section we’ll do
an explicit RG transformation for the nearest-neighbor Ising model in 1D. Before that, we
pause to paint the picture of the general formulation of the approach.

Our goal is to find a renormalization group transformation, Rl, which coarse-grains over
some length scale l and in so doing reduces the number of degrees of freedom in the problem:
if there were originally N degrees of freedom, now there are only

N ′ =
N

ld
.

We, furthermore, want to do this in such a way that the actual free energy is preserved. We
might accomplish this trick by some sort of “block spin” procedure suggested by Kadanoff, or
by moving to a Fourier space description of a model and integrating out any components with
large momenta (doing something like

∫ k
k/l
dq qd−1, where k represents some upper momentum

cutoff), or by some other method. This typically reduces the density of the degrees of freedom,
so we additionally rescale all lengths. For the simple lattice spin systems we are about to
study, this can be thought of as agreeing to measure lengths in units of the lattice spacing,
regardless of whether we have the original lattice or the “thinned out” lattice. In any case,
measuring distances as x′ = x/l means that the new correlation length will be trivially
related to the correlation length before the transformation: ξ′ = ξ/l.

Schematically, after doing this procedure we have arrived at something like

Z =
N∑
{σ}

eβH =
N ′∑
{σ′}

eβH
′
. (9.11)
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If we suppose the Hamiltonian for our system depends on a collection of coupling constants
~k, then the new effective Hamiltonian depends on the set ~k′ = Rl(~k). In general, an RG
transformation corresponds to some unpleasantly nonlinear function of these coupling con-
stants, which might not generically preserve the form of the Hamiltonian. That is: a typical
case might be that coupling constants which were zero in the original H flow to nonzero
values for H′. However, since the partition function Z is unchanged, we can still say that the
free energy is not changed by the transformation, and hence from our rescaling of lengths
the free energy density transforms simply as

f(~k) = l−df(~k′) (9.12)

Suppose one is able to find a fixed point of Rl, i.e., a set of ~k∗ such that ~k∗ = Rl(~k
∗).

As we have indicated before, Rl has scaled lengths by a factor of l, so the correlation length
behaves as

ξ(~k′) =
ξ(~k)

l
⇒ ξ(~k∗) =

ξ(~k∗)

l
⇒ ξ(~k∗) = 0 or ∞. (9.13)

Fixed points with a vanishing correlation are called trivial fixed points, whereas fixed points
with a diverging correlation length are critical fixed points.

9.2.1 Local flows near a fixed point

Suppose, having found a fixed point, we investigate how coupling constants changes if you
start not at that fixed point but rather somewhere nearby, at ~k = ~k∗+ δ~k. Under the action
of an RG transformation, we have ~k′ = Rl(~k) = ~k∗ + δ~k′, where we can Taylor expand to
find

δk′n =
∑
m

∂k′n
∂km

∣∣∣∣
~k=~k∗

δkm. (9.14)

Call Ml the matrix whose (n,m)th element is this ∂k′n
∂km

∣∣∣
~k=~k∗

, and denote its eigenvalues and

eigenvectors as λi(l) and ~ei(l), respectively (here we are emphasizing that the eigenvalues and
eigenvectors depend on the scale of the RG transformation; we will suppress this dependence
much of the time).

One of the things we require of the transformation Rl is that it is monoid127, by which
we mean that successive transformations with l = l1 and l = l2 are equivalent to a single
transformation of scale l1l2. Thus, if ~k′ = Rl1(

~k) and ~k′′ = Rl2(
~k′), then we also have ~k′′ =

Rl1l2(
~k). The RG transformation being a monoid means that the matrix Ml has the same

property, and so do its eigenvalues:

Ml1Ml2 = Ml1l2 and λi(l1)λi(l2) = λi(l1l2). (9.15)

Thinking of the eigenvalues as functions of the lengthscale over which the transformation
is defined, what kinds of functions have this property? We can answer this by taking the

127Almost a group, but more than a semi-group. We require l ≥ 1, so there is an identity transformation
(l = 1), but there are no inverse transformations that let you recover information at a finer scale. I guess
“renormalization monoid” is not as catchy a name.
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partial derivative with respect to l2 on both sides of the equation above, giving us

λi(l)
∂λi(l2)

∂l2
= l1

∂λi(l1l2)

∂l1l2
. (9.16)

If we now set l2 = 1 – for which we know that λi(1) = 1, since a transformation with l = 1
corresponds to keeping all of the original degrees of freedom and hence not changing anything
about the Hamiltonian – we have a differential equation that reads (letting l1 = l now, for
notational convenience)

yiλi(l) = l
∂λi
∂l
, where yi =

∂λi(l)

∂l

∣∣∣∣
l=1

, (9.17)

which (given the boundary condition λi(1) = 1) has the solution

λi(l) = lyi . (9.18)

We will make use of this functional form shortly. First, though, let’s think about how
coupling constants evolve in terms of the possible values that these eigenvalues can take. To
do so, we’ll write δ~k in the basis of Ml’s eigenvectors: δ~k =

∑
i ai~ei, where ai is just the

projection of δ~k onto ~ei. Well, we can now compactly write

δ~k′ = Mlδ~k = Ml

∑
i

ai~ei =
∑
i

(aiλi)~ei, (9.19)

where we see now that (aiλi) represents how the projection of δ~k onto each eigendirection
changes after each RG step. As a bit of nomenclature128, there are three important cases to
consider:

(a) |λi| > 1, which means the projection increases (i.e., in this direction the coupling
constants flow away from the fixed point). These are said to be “relevant” directions.

(b) |λi| < 1, which means the projection decreases (i.e., in this direction the coupling con-
stants flow towards from the fixed point). These are said to be “irrelevant” directions.

(c) |λi| = 1, which means the projection stays the same. These are said to be “marginal”
directions (and are often associated with log corrections to scaling, and are often im-
portant if d is either the upper or lower critical dimension).

9.2.2 Origin of scaling

To explicitly see how all of this machinery lets us understand critical behavior, consider the
simple case of there being a single relevant variable near a fixed point. Let’s suppose the

128Importantly, these terms refer to the behavior of the different directions at a particular fixed point. The
same flow equations can, of course, have more than one fixed point, and there is nothing that says (e.g.) that
a relevant direction at one fixed point must also be a relevant direction at a different fixed point.
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relevant variable is just the temperature of the system, T , and that we start at T = T ∗+ δT .
We know that after our RG transformation this will flow to T ′ = Rl(T ) = T ∗ + δT ′, where

δT ′ = (T ′ − T ∗) ≈ λ(l)(T − T ∗), for λ(l) =
∂Rl

∂T

∣∣∣∣
T=T ∗

. (9.20)

We already know what λ(l) has to look like; it is λ(l) = lyt . Let’s divide both sides of Eq.
9.20 by T ∗ and reintroduce our friend t = (T − T ∗)/T ∗, the reduced temperature. We have
that t′ = tlyt after a single RG transformation, and after n iterations we have

t(n) = tlnyt , and ξ(t) = lnξtn = lnξ(tlnyt). (9.21)

Let’s choose a particular scale for our transformation, selecting

ln =

(
b

t

)1/yt

,

where b is just some arbitrary number of order one. We finally see that the correlation length
close to the critical point behaves like

ξ(t) =

(
t

b

)−1/yt

ξ(b). (9.22)

That is, we have just computed the critical exponent associated with the divergence of the
correlation length:

ν =
1

yt
, where yt =

log (λ(l))

log(l)
. (9.23)

That is: the critical exponent is associated with computing the eigenvalues of the linearized
transformation that describes how relevant coupling constants flow near a fixed point of the
transformation. These can take quite general values, and hence are not at all restricted to
coincide with the mean field values we repeatedly encountered in the last chapter. Even
more importantly, the critical exponents calculated according to this prescription coincide
with those of actual physical systems !

9.2.3 Origin of singular behavior

ball rolling on a hill picture of wilson→ discontinuous jump in position after infinite amount
of time 129. A basic insight of RG: rather than tackle the whole problem all at once, it
might be easier to see how much the problem changes if you adjust the resolution you choose
to study the problem at. Looking at the whole bulk material / taking the thermodynamic
limit then corresponds to performing an RG transformation Rl an infinite number of times.
This gives a more pleasing intuition for why the thermodynamic limit permits singularities
(compared, that is, to the earlier, “well, the infinite sum of analytic functions need not
necessarily be analytic” argument we had to resort to earlier).

it might be easier to

129Ref. [60]
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Figure 9.2: Singular behavior in a classical system Suppose dynamics are governed by
the equation dx/dt = −dφ/dx, with our favorite double well potential (left). At any finite
time, the final position of a particle is a continuous function of its initial position, but if we
take the t→∞ limit we get a discontinuity.

Explicit example: φ(x) = −x2/2 + x4/4, then solution to differential equation is

x(t) = Sign(xi)
et√

e2t + x−2
i − 1

so inifinite time limit is just which side of the saddle point you started on.

9.3 The 1-dimensional Ising chain

In the rest of this chapter, we will see explicit examples of this renormalization group ap-
proach put into practice130. We begin by writing down the canonical partition function
associated with a 1D Ising model with N sites and only nearest neighbor interactions:

Z =
∑
{σi}

e−βH, where − βH = Nk0 + k1

N∑
i

σi + k2

N∑
i

σiσi+1. (9.24)

We have once again changed notation to emphasize that we are writing some general Hamil-
tonian that might have terms containing different numbers of coupled spins; relative to what
we’ve written in the last chapter we have k2 = βJ , k1 = βB, and k0 = 0 (we will see shortly
why we needed to pay attention to the k0 term!).

Recalling the spirit of Kadanoff’s block spin argument, our goal is to find a transformation
which (a) reduces the number of spins we are considering but (b) describes the same physical
system and, hence, leaves the partition function unchanged while (c) not changing the form
of the effective Hamiltonian describing the new degrees of freedom. That is, we want

Z =
∑
{σ′i}

e−βH
′
, where − βH′ = N ′k′0 + k′1

N ′∑
i

σ′i + k′2

N ′∑
i

σ′iσ
′
i+1 and N ′ < N. (9.25)

130Recalling, M. E. Fisher’s remark that “The actual process of explicitly constructing a useful renormal-
ization group is not trivial” [61], in this section we’ll focus on a “trivial” example which, alas, is not as useful
as we might like.
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One idea might be to average neighboring pairs of spins together into a new effective spin,
but this has the issue that the average of two spins is a three-valued quantity, whereas the
original spins were two-valued. We can avoid this by picking one of the two spins in each
pair to be the “tie-breaker,” say, the spin with i an odd number; this procedure is equivalent
to saying the value of the new block spin is in fact whatever the spin of the tie-breaker is.

9.3.1 Decimation of the 1D Ising Chain

That is: we are going to separate our original set of spins σi into the set where i is odd vs
even. Let σ′i = σ2i−1, the ith odd spin of the original chain, and let si = σ2i, the ith even spin
of the original chain. We will now manipulate the original partition function by summing
over (“integrating out”) the even spins. First, let’s write the original partition function in a
more convenient form:

Z =
∑
{σi}

exp

(
N∑
i=1

[
k0 +

k1

2
(σi + σi+1) + k2σiσi+1

])
(9.26)

=
∑
{σ′i}

∑
{si}

exp

N/2∑
i=1

[
k0 +

k1

2
(σ′i + si) + k2σ

′
isi + k0 +

k1

2
(si + σ′i+1) + k2siσ

′
i+1

]
=
∑
{σ′i}

∑
{si}

N/2∏
i=1

exp

(
2k0 +

k1

2

[
σ′i + 2si + σ′i+1

]
+ k2

[
σ′isi + siσ

′
i+1

])
. (9.27)

Now that we have Z in a form where all of the contributions of each si are accounted for,
we explicitly carry out the sum over si = −1,+1:

Z =
∑
{σ′i}

N/2∏
i=1

[
e2k0+

k1
2

(σ′i+σ
′
i+1+2)+k2(σ′i+σ

′
i+1) + e2k0+

k1
2

(σ′i+σ
′
i+1−2)+k2(−σ′i−σ′i+1)

]
∑
{σ′i}

N/2∏
i=1

[
exp(2k0) exp

[
k1

2
(σ′i + σ′i+1)

]
· 2 cosh

[
k1 + k2(σ′i + σ′i+1)

]]
. (9.28)

We compare this with Eq. 9.25, and see that to meet our criteria of having a Hamiltonian
in the same form as the original one, we need to satisfy

exp

[
k′0 +

k′1
2

(σ′i + σi+1) + k′2σ
′
iσ
′
i+1

]
= exp(2k0) exp

[
k1

2
(σ′i + σ′i+1)

] (
2 cosh

[
k1 + k2(σ′i + σ′i+1)

])
.

(9.29)
The two sides look quite different, but remember: we only need them to be equal for the
values that the degrees of freedom can actually take! That is, we need the equation to hold
for the allowed values of σi = ±1 and σi+1 = ±1.

So, let’s introduce the notation

x = ek0 , x′ = ek
′
0 , y = ek1 , y′ = ek

′
1 , z = ek2 , z′ = ek

′
2 (9.30)
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and enumerate the four relevant cases and corresponding statement of Eq. 9.29 to hold:

σ′i σ′i+1 equation

+ + x′y′z′ = x2y(yz2 + y−1z−2) (9.31)

+ − x′(z′)−1 = x2(y + y−1) (9.32)

− + x′(z′)−1 = x2(y + y−1) (9.33)

− − x′(y′)−1z′ = x2y−1(y−1z2 + yz−2) (9.34)

Note that the middle two equations are identical, leaving us with three equations and three
unknowns, with the solution131

(x′)4 = x8(yz2 + y−1z−2)(y−1z2 + yz−2)(y + y−1)2,

(y′)2 = y2 (yz2 + y−1z−2)

(y−1z2 + yz−2)
, (9.35)

(z′)4 =
(yz2 + y−1z−2)(y−1z2 + yz−2)

(y + y−1)2
,

or, in terms of the coupling constants themselves,

k′0 = 2k0 + log 2 +
1

4
log
[
cosh2(k1) cosh(2k2 + k1) cosh(2k2 − k1)

]
,

k′1 = k1 +
1

2
log [cosh(2k2 + k1) sech(2k2 − k1)] , (9.36)

k′2 =
1

4
log
[
sech2(k1) cosh(2k2 + k1) cosh(2k2 − k1)

]
.

9.3.2 Flow of the coupling constants

Equations 9.36 dictate how the coupling constants of the effective Hamiltonian evolve for
this particular renormalization group transformation (which blocks together pairs of spins
at a time). Upon repeated application of this transformation, do these equations have a fixed
point? First, we note that the k′0 terms reflects the part of the free energy which does not
couple to our degrees of freedom – near a phase transition we expect this to vary smoothly
rather than contribute to the singular part of the free energy. We also see more directly
that the value of k0 does not enter in the expressions for how k1 and k2 evolve. As such,
even though it was needed to have a Hamiltonian whose form was unchanged after our
renormalization group transformation, we will henceforth neglect it.

Case 1: No external field First, we notice that if there is no external field, so that k1 = 0,
the flow equations tell us that the new effective Hamiltonian also has no field: k′1 = 0. Our
equation for the nearest neighbor spin-spin coupling constant becomes

k′2 =
1

2
log cosh(2k2). (9.37)

131The x′ equation comes from multiplying the four cases together, the y′ equation comes from taking the
ratio of (++)/(−−), and the z′ equation comes from taking the ratio of (++)(−−)/(+−)(−+).
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Recalling that k2 = βJ , we see that as T →∞, k2 → 0 and this equation becomes k′2 = k2
2.

That is, we see that if k2 is a small number, k′2 is an even smaller number. Thus, the k2 = 0
fixed point is a stable one. It represents the high-temperature, disordered phase of the Ising
spin chain, and has a vanishing correlation length.

At the other extreme, T → 0, k2 →∞ and this equation becomes k′2 = 1
2

log(exp(2k2)/2) ≈
k2− log(2)/2. That is, if k2 is a very large number, then k′2 is a very slightly smaller number.
Thus, the k2 = 0 fixed point is an unstable one. It represents the zero-temperature ordered
state, but because it is unstable we see that if the system is at any finite temperature the
system will slowly flow away from that fixed point. There are no other fixed points for this
equation, and so on long enough length scales the 1D Ising model in the absence of a field
always looks disordered.

Case 2: Finite external field When k1 6= 0, one can calculate a line of stable fixed
points along k2 = 0 and any value of k1. Here, for any value of the external field, the 1D
Ising models will (on long enough length scales) look like a collection of independent spins
in an external field.

ABOVE: FINISH CALCULATIONS TO SHOW, e.g., how the flow near unstable FP
relates back to the scaling of the correlation length.

Figure 9.3: Evolution of coupling constants of the 1D Ising model under decima-
tion Solutions to Eq. 9.36, where the starting point of each flow curve is indicated by a dot.
Flows that start at k1 = 0 stay at k1 = 0, whereas nonzero values of the external field flow
to fixed points with larger effective values of k1 and with no spin-spin coupling.

9.3.3 Critical surfaces, flow, etc

[62], also Plischke & Bergen 7.2
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9.4 Approximate real space calculation: The 2-dimensional

Ising model on a triangular lattice

“In 1D we could exactly solve for critical exponents, but there was no finite temperature
critical point; what happens in 2D?” Niemeijer and van Leeuwen, basically132. Need to write
the connective tissue.

Figure 9.4: Block spins for the Niemeijer-van Leeuwen cumulant expansion (Left)
A small patch of a triangular lattice. (Right) Grouping spins into a new triangular lattice of
block spins, each of which is formed from three microscopic spins.

We’re now on a triangular lattice (Fig. 9.4), and for for the purpose of keeping our
calculations as simple as possible, let’s consider the Ising model Hamiltonian with only
nearest-neighbor interactions (no k0, no external field),

−βH = k
∑
〈ij〉

σiσj,

where 〈ij〉 is our standard notation for “spins i and j which are nearest neighbors.” You
may wonder why we are not including the constant (k0) term; as before it turns out not to
contribute to the flow of the more interesting coupling constants, and we will soon see that
we have more pressing problems to worry about when it comes to maintaining the form of
the Hamiltonian under the action of a block spin transformation. As shown in Fig. 9.4, we
will consider block spins composed of three microscopic spins each. We adopt a notation
in which block spins are identified σs and capital roman subscripts and, since they will be
averaged over, we’ll use a sIi to index each of the three microscopic spins corresponding to a
given block spin. Whereas in the 1D case we used a “tie-breaker” spin (which amounted to
completely integrating out every other degree of freedom), here each block spin contains an
odd number of spins, so the block spins will be determined by majority rule:

σI = sign
(
sI1 + sI2 + sI3

)
. (9.38)

132Ref. [63]



196CHAPTER 9. CRITICAL BEHAVIOR: THE RENORMALIZATIONGROUP APPROACH

Note that, as enumerated in Table 9.4.1, each value for a block spin corresponds to four
configurations of the underlying microscopic spins.

σI sI1 sI2 sI3
+1 + + +

+ + -
+ - +
- + +

-1 - - -
- - +
- + -
+ - -

Table 9.1: Microscopic spin configurations corresponding to a given block spin

9.4.1 Niemeijer-van Leeuwen Cumulant Expansion

With this set-up and choice of a block spin, how should we proceed? Our goal is to identify
how this block spin transformation causes the coupling constant(s) of the Hamiltonian to
flow. Anticipating an aspect of this problem which we saw even in the case of decimation of
the 1D chain feature we found (in Eq. 9.29, where the form of the renormalized Hamiltonian
looked quite different from the original, but which we only needed to agree with the form of
the original Hamiltonian on the allowed values of the block spins), we’ll write our condition
that the partition function be the same before and after a block spin transformation as

exp (−βH′ {σI}) =
∑
{si}

exp
(
−βH

{
sIi |σI

})
. (9.39)

We will try to follow a “perturbative” approach to this problem, albeit a perturbative
approach of a very strang flavor. We’ll write H = H0 + V , where H0 corresponds to all
interactions between spins entirely within a single block, and V corresponds to interactions
between blocks. That is, we start with

−βH0 = k
∑
I

∑
i 6=j∈I

sIi s
I
j (9.40)

−βV = k
∑
I 6=J

∑
i∈I,j∈J

sIi s
J
j . (9.41)

Something of a ludicrous perturbation theory! It is the same constant, k, that sets the scale
of both H0 and V . This is clearly not so much a perturbative calculation in the sense of
expanding via a small parameter, but rather just a scheme with which to calculate.

In this scheme, we’ll adopt the notation from the last chapter in which 〈A〉(0) means the
average with respect to the H0 part of the Hamilton. For observables which depend on the
value of the block spins, this average corresponds to averaging over spins consistent with the
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value of the block spins, weighted by the relevant exponential factor of H0. That is,

〈A(σI)〉(0) =

∑
{si} exp

(
−βH0

{
sIi |σI

})
A(σI)∑

{si} exp (−βH0 {sIi |σI})
. (9.42)

We can now write Eq. 9.39 as

exp (−βH′ {σI}) =
〈
e−βV

〉
(0)

∑
si

exp
(
−βH0(sIi |σI)

)
. (9.43)

The blue sum on the right-hand side corresponds to what we’ll call Z0, the partition function
for one block given a specific (±1) value of σI :

Z0 =
∑

sI1,s
I
2,s

I
3|σI

exp
[
k
(
sI1s

I
2 + sI2s

I
3 + sI1s

I
3

)]
= e3k + 3e−k, (9.44)

where a direct calculation of the sum given Table confirms that Z0 is the same regardless of
whether σI is plus or minus one. We will get a copy of Z0 for every block spin in the system,
leaving us to solve

e−βH
′
= Z

N/3
0

〈
e−βV

〉
(0)
. (9.45)

We have seen the idea of using the log to go from a generator of moments to a generator of
cumulants, and that’s exactly how we proceed here, transforming the above into an expression
for the new Hamiltonian as a cumulant expansion of averages with respect to H0:

− βH′ = N

3
logZ0 + 〈−βV 〉(0) +

1

2

[〈
(−βV )2

〉
(0)
− 〈−βV 〉2(0)

]
+ · · · (9.46)

9.4.2 Critical behavior at 1st-order

We begin by calculating the first moment of V defined in Eq. 9.41. For convenience, we define

βV =
∑
I 6=J

−βVIJ ,

where up to labels and indexing (c.f. Fig. 9.4) the inter-block interactions are

−βVIJ = ksI2(sJ1 + sJ3 ).

We note that the spins within a block are all equivalent to each other, and that H0 does
not couple spins in different blocks together. This fact powers the cumulant expansion we
are trying to carry out, as it implies that sIi and sJj are independent when averaging with
respect to the weights given by H0:

〈−βVIJ〉(0) = 2k
〈
sI2s

J
1

〉
(0)

= 2k
〈
sI2
〉

(0)

〈
sJ1
〉

(0)
. (9.47)

To evaluate the average of a specific spin within a block, we combine the table of config-
urations in Table 9.4.1 with the definition of an ensemble average〈

sI1
〉

(0)
=

1

Z0

∑
{si|σI}

sI1 exp
[
k(sI1s

I
2 + sI2s

I
3 + sI1s

I
3)
]
. (9.48)
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Explicitly performing the sum we see that

〈
sI1
〉

(0)
=

{ 1
Z0

(
e3k + e−k

)
for σI = +1

1
Z0

(
−e3k − e−k

)
for σI = −1

(9.49)

Defining for convenience the function

φ1(k) =
e3k + e−k

e3k + 3e−k
(9.50)

we see that the average of 1 spin within a block is simply
〈
sI1
〉

(0)
= φ1(k)σI . Combining the

above, we find

βV =
∑
I 6=J

−βVIJ ,= 2kφ2
1(k)

∑
〈IJ〉

σIσJ . (9.51)

Fantastic! This relation – k′ = 2kφ2
1(k) – is precisely the kind of flow of coupling constants

we had hoped to calculate, and we can now ask what it implies about the potential critical
points. We first look for fixed points of this equation. When k is small we Taylor expand to
find k′ ≈ k/2 + k2 + · · · – i.e., when k is small k′ becomes smaller still, so k = 0 is a stable
fixed point (corresponding again to the high temperature disordered phase). In the opposite
limit, for very large k we have k′ ≈ 2k, so in this calculation k → ∞ is also a stable fixed
point (a low-temperature ordered phase).

With stable fixed points at both zero and infinity, there must be some nontrivial unstable
or critical fixed point at some finite k (or, equivalently, at some finite temperature). We are
looking for some k∗ such that

k∗ = 2k∗
(
e3k∗ + e−k

∗

e3k∗ + 3e−k∗

)2

.

Defining x = exp(4k∗), we see that this nontrivial fixed point is at

x = 1 + 2
√

2⇒ k∗ =
1

4
log(1 + 2

√
2) ≈ 0.3356 . . . . (9.52)

Compared to Onsager’s exact result of k∗ ≈ 0.274 [64] this is certainly an improvement
on the mean field result of k∗ = 1/6 (as seen in Sec. 2.4.2). However: the location of the
critical point is sensitive to all of the details of a theory, and much more important is to
understand the critical exponents. We follow the program outlined earlier in this chapter,
and first evaluate how the coupling constant flows near the critical point:

λk =
∂k′

∂k

∣∣∣∣
k=k∗

=

[
2(1 + x)(3 + x2 + 4x)(1 + 4k)

(3 + x)3

]
k=k∗

≈ 1.6235 . . . . (9.53)

We connect this derivative to the critical exponent describing the correlation length (ξ = |t|−ν
for ν = 1/yt) as usual:

λk = lyt ⇒ yt =
log λk
log l

. (9.54)
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The length scale of our block spin transformation (i.e., the lattice spacing of the block spins
compared to the microscopic lattice spacing) l =

√
3, giving us

yt ≈ 0.8822 . . .⇒ ν ≈ 1.1335 . . . . (9.55)

The exact result is ν = 1, and our 1st-order estimate is indeed an improvement over the
mean-field result of ν = 1/2.

9.4.3 Critical behavior at 2nd-order

Foundational to a standard definition of a successful physical theory is not merely that it
gives a more satisfactory answer than another theory, but that we have some confidence
that were we to work harder we would find ever-closer agreement with experimental results.
With that perspective, we continue the Niemeijer-van Leeuwen calculation to the next order.
Fundamentally we need to calculate the second cumulant of (−βV ), for which we write out
all of the terms:

k2

2

 ∑
I 6=J

i∈I,j∈J

∑
M 6=L

m∈M,l∈M

(〈
sIi s

J
j s

M
m s

L
l

〉
(0)
−
〈
sIi s

J
J

〉
(0)

〈
sMm s

L
l

〉
(0)

) . (9.56)

We already know that
〈
sIi s

J
j

〉
(0)

= φ2
1(k)σIσJ , and that furthermore if the pair of blocks I

and J are completely distinct from blocks M and L then〈
sIi s

J
j s

M
m s

L
l

〉
(0)

=
〈
sIi s

J
J

〉
(0)

〈
sMm s

L
l

〉
(0)
,

and hence all of these terms will have their contribution canceled by the analogous terms
coming from the square of the first moment. What remains are contributions from terms in
which one label between block-spin pairs is shared, with representative examples shown in
Fig. 9.5.

Let’s first calculate the contribution from the left-most graph in Fig. 9.5, for which L = J .
The square of the first moment looks like〈

sIi s
J
J

〉
(0)

〈
sMm s

J
j

〉
(0)

= φ4
1(k)σIσM ,

where we have noted that σ2
J = 1. We need only now calculate the corresponding second

moment terms that appear:〈
sI2(sJ1 + sJ3 )sJ3 (sM1 + sM2 ))

〉
(0)

=
〈
sI2(sM1 + sM2 ) + sI2s

J
1s

J
3 (sM1 + sM2 )

〉
(0)

(9.57)

= 2φ2
1

(
1 +

〈
sJ1s

J
3

〉
(0)

)
σIσM . (9.58)

We again directly evaluate the remaining two-spin-on-the-same-block expectation value, dis-
covering that regardless of the sign of σJ we get

φ2(k) ≡
〈
sJ1s

J
3

〉
(0)

=
e3k − e−k

e3k + 3e−k
. (9.59)
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Figure 9.5: Graphs for the second-order cumulant expansion (Left) A graph con-
tributing to nearest-neighbor block-spin interactions (Middle) A graph contributing to next-
nearest-neighbor block-spin interactions. (Right) A graph contributing to more distant next-
nearest-neighbor block-spin interactions.

This is not so bad: what we’ve been calling k′ gets a contribution from this second-order
calculation that are like

2k2φ2
1(1 + φ2 − 2φ2),

further renormalizing the nearest-neighbor coupling.
The problem is that Fig. 9.5 contains other graphs, too, corresponding to two new kinds

of block-spin interactions (both next-nearest-neighbor, and which we’ll label k2 and k3 for
the middle and right graphs, respectively). For example, consider the right-most graph in
the figure; the second-moment term contains terms like〈

sM1 (sI2 + sI3)sJ1 (sM2 + sM3 ))
〉

(0)
→ 4

〈
sI2
〉

(0)

〈
sJ1
〉

(0)

〈
sM1 s

M
2

〉
(0)
. (9.60)

Subtracting of the square of the first moment contributions, we find that at this order the
next-nearest-neighbor coupling constant gets a contribution like

k′3 = 4k2(φ2
1φ2 − φ4). (9.61)

What are we to do? We have discovered that our block spin transformations starts gen-
erating new interactions as we work to higher order in our cumulant expansion (and which
we certainly did not take into account when we were working at first order). How can we
organize all of these terms so that we are self-consistently working to a given order of our
expansion? Niemeijer and van Leeuwen’s strategy was to assume that the coupling constants
generated at different orders in the cumulant expansion have different orders of magnitude:
k is a first order term and always appears, k2, k3 � k are second order terms, and more
and more smaller and smaller coupling constants appear as we move to higher orders in the
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cumulant expansion. None of this changes H0 (since all new interactions couple different
blocks together), but we need to accommodate them in the inter-block piece,

−βV = k
∑
〈I 6=J〉

σIσJ + k2

∑
〈I 6=J〉2

σIσJ + k3

∑
〈I 6=J〉2

σIσJ + · · · ,

where in an abuse of notation we use 〈I 6= J〉i to stand for the collection of spins correspond-
ing to the ki interaction.

Working consistently to second order (i.e., in this case, including {k, k2, k3} terms in the
calculation of the first cumulant but including only k terms in the calculation of he second
cumulant). The result is a system of equations for how the coupling constants evolve:

k′ = 2kφ2
1 + 4k2(φ2

1 + φ2
1φ2 − 2φ4

1) + 3k2φ
2
1 + 2k3φ

2
1 (9.62)

k′2 = k2(7φ2
1φ2 + φ2

1 − 8φ4
1) + k3φ

2
1 (9.63)

k′3 = 4k2(φ2
1φ2 − φ4). (9.64)

Does this equation have a non-trivial fixed point (and, moreover, one that satisfies the
underlying assumption that near the critical point different coupling constants are of different
orders)? Indeed, it does! One can find that

~k∗ ≈ {0.278869 . . . ,−0.014248 . . . ,−0.0152313 . . .},

a fixed points in which k is roughly an order of magnitude larger than the “second order”
terms k2 and k3. We can compute the matrix of derivatives of ~k′ with respect to ~k evaluated
at this fixed point133,

M̄l ≈

 1.831 . . . 1.345 . . . 0.896 . . .
−0.00519 . . . 0 0.448 . . .
−0.0781 . . . 0 0

 . (9.65)

So, is this better than the first-order calculation? The critical point is at k∗ ≈ 0.257 . . .,
which is indeed closer than our first-order estimate to the exact value. The largest eigenvalue
of the above matrix gives

λk ≈ 1.7728⇒ yt ≈ 1.0424⇒ ν ≈ 0.959 . . . , (9.66)

which is again closer to the exact exponent of one than the 1st order calculation’s result!
Kardar “likely accidental”, Hemmer “asymptotic series”, Goldenfeld “results are con-

verging but non-uniformly”, Reichl “works well”, Plischke & Bergersen “not encouraging.”
Tough to go to much higher order: start generating more and more long-range interactions,
4- and 6-spin interactions, etc etc. Not how one really computes exponent values anyway,
but good intuition?

[62] for “does it converge or not’, together with other texts

133The particularly eagle-eyed reader will notice some small numerical differences between this matrix and
the corresponding one in Niemeijer and van Leeuwen’s work [63] – this is entirely due to having a slightly
better numerical estimate of the fixed point.
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9.5 Universality and a momentum-space formulation

Gaussian model. motivate with “how do we get universality back?”

9.6 Problems



Chapter 10

Fluctuations and non-equilibrium
physics

Intro – in equilibrium, we’ve already seen some fluctuation-response relationships... etc...
whole chapter needs to be added!

10.1 Brownian motion – Einstein, Langevin, and Smolu-

chowski

10.2 Fokker-Planck

10.3 Fluctuation-dissipation

10.4 Onsager – reciprocity and non-reciprocity

10.5 Problems
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Part IV

Appendices

205
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“Murder your darlings,” better writers than I have advised [65]. The less cold-hearted of
us merely shuffle them off to an appendix.

The appendices are mostly where I’ve shuffled TeX’d notes that used to be a core part
of the class, but which I don’t typically include in lectures anymore... some will eventually
remain, some are sufficiently duplicative of existing text that I’ll just say “Go look at Kardar,
Chapter X for details”
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Appendix A

Thermodynamics

A.1 2nd Law: from fridges to entropy134

We’ll start quantifying these statements by defining what engines and refrigerators are, along
with “figures of merit” for how they are performing. An engine is a machine which takes QH

of heat from a source, converts some of it to work W , and dumps some QC of it into a heat
sink. Its efficiency, η, is

η =
W

QH

=
QH −QC

QH

, (A.1)

and Kelvin says that η < 1.
A refrigerator is just an engine running in reverse: work is done in order to take some

amount of heat QC out of a cold place and dumps QH as exhaust into a hotter place (moving
heat from cold to hot). The performance of a refrigerator, ω, is

ω =
QC

W
=

QC

QH −QC

(A.2)

To see that Kelvin’s and Clausius’ formulations are equivalent, one can play games in-
volving connecting engines and refrigerators together. If you use an ideal engine to run a
refrigerator, you end up with an ideal refrigerator (i.e., “not Kelvin’s statement implies not

134Kardar, Stat Phys Particles., Ch.1

Figure A.1: Idealized engine (left) and refrigerators (right)

209
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Clausius’ statement”). Similarly, if you use the heat exhausted from an ideal refrigerator to
power an engine you get an ideal engine (i.e., “not Clausius’ statement implies not Kelvin’s
statement”). Taken together, you get Kelvin’s statement ⇐⇒ Clausius’ statement.

These definitions probably seem pretty trivial135. And yet, with an excursion through
thinking about Carnot Engines, we’ll see that these formulations let us answer the question
I thought you should pose in Section 1.3, when we wrote:

dE =
∑
i

Jidxi + ?

A.1.1 Carnot Engines

A Carnot Engine (CE) is any engine that (1) is reversible, (2) runs in a cycle, and (3)
operates by exchanging heat with a source temperature TH and a sink temperature TC . The
reversibility of a CE is like a generalization of a kind of “frictionless” condition in mechanics,
letting us go forward and backwards along a path just by reversing the inputs and outputs
of the CE. The cyclic condition means that we can think of the start and end points of
the work-path the CE traces out as the same. Finally, the last condition is more precise
than the figure we drew in A.1: we insist that the heat sources and sinks have well-defined
thermodynamic temperatures.

Example: Ideal gas Carnot Cycle

As an example of a system that could satisfy the Carnot Engine conditions, let’s imag-
ine making a CE with an ideal gas. The task is essentially to chose the paths through
Pressure-Volume space we will take that will form a cycle and let us run everything re-
versibly, while operating between exactly two temperatures. We will select two isotherms
to serve as the heat exchanges that the engine will operate between, but how can we pick
reversible adiabatic paths between the temperatures?

135Perhaps, even, a bit dull!
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Figure A.2: Schematic of a Carnot Cycle for an ideal gas, where two of the path
segments are along isotherms (blue and red curves), and two adiabatic paths between
the isotherms (black and grey curves).

A reversible transformation must be quasi-static, and for an ideal gas we know E =
3
2
NkBT = 3

2
PV. Along a quasi-static path we have

d̄Q = dE − d̄W = d(
3

2
PV ) + pdV =

5

2
PdV +

3

2
V dP,

and the adiabatic (d̄Q = 0) gives us

0 =
dP

P
+

5

3

dV

V
⇒ PV 5/3 = constant. (A.3)

A schematic of such an ideal gas CE cycle is illustrated in Fig. A.2. In the “forward”
cycle (A→ B → C → D → A) heat is used from A to B to expand the gas, the gas does
work as it now continues to (adiabatically) expand B to C, is isothermally compressed
from C to D, and finally it is adiabatically compressed from D back to A. Work (positive
and negative) is done by the gas along each segment, with the total work done equal to
the area enclosed by the cycle in the P -V plane.

Now, Carnot’s Theorem states that, of all imaginable engines operating between TH and
TC , a Carnot engine is the most efficient136. This can be proved by playing the usual kind
of engine games (you, the reader, should draw the following pictures!). First, take a Carnot
Engine, and use a non-Carnot-Engine’s output to run the CE as a refrigerator. Let primes
refer to heat connected to the Carnot engine, and unprimes to the NCE. The net effect is to
transfer heat QH −Q′H = QC −Q′C from TH to TC . Clausius’ formulation of the 2nd law tells
us you can’t transfer negative heat, so QH ≥ Q′H . But the amount of work, W , is the same
for both engines, so

W

QH

≤ W

Q′H
⇒ ηCE ≥ ηNCE. (A.4)

Thermodynamic Temperature Scale

We saw that the 0th law let us define an empirical temperature scale, and now we will see
that the 2nd law lets us define a thermodynamic temperature scale. We established in the
example above that we can (in theory) build a Carnot engine using an ideal gas, and it is
straightforward to show that all Carnot engines operating between the same TH and TC have
the same efficiency137.

136I never met Carnot, but apparently he was the kind of guy to write theorems like “Carnot is the best.”
137Play the usual sorts of games: use one Carnot Engine to run the other in reverse. Then switch which

engine is running forward vs backwards, demonstrating that ηCE1
= ηCE2

.
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This is already quite interesting: since the efficiency of a CE is independent of the workings
of the machine itself, the only thing the efficiency can depend on are the temperatures it
operates between, i.e., we have η(TH , TC). Already, if you can build any CE and if you know
its efficiencies at different T , you can define T independent of any material properties. We
can make even more progress by running two engines in series; one between T1 and T2, and
the other between T2 and T3, as in Fig. A.3.

Figure A.3: Schematic of Carnot engines in series

In that figure, the working of CE1 tells us that

Q2 = Q1 −W12 = Q1(1− η(T1, T2)), (A.5)

and the working of the second CE tells us

Q3 = Q2 −W23 = Q2(1− η(T2, T3)) = Q1(1− η(T1, T2))(1− η(T2, T3)). (A.6)

But we also know, viewing the series as a single engine, that

Q3 = Q1 −W13 = Q1(1− η(T1, T3)). (A.7)

Comparing our two expressions for Q3 we see that

(1− η(T1, T3)) = (1− η(T1, T2))(1− η(T2, T3)); (A.8)

this is a constraint on the functional form that η can take. We postulate, as something that
satisfies the constraint, that

(1− η(T1, T2)) =
Q2

Q1

≡ f(T2)

f(T1)
. (A.9)

By convention, we choose f(T ) = T , giving us

η(TH , TC) =
TH − TC
TH

. (A.10)

We’ve done it! Up to a constant of proportionality, Eq. A.10 defines a thermodynamic
temperature (and, if we like, we can again set the arbitrary constant with the help of the
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measured triple point of water-ice-steam). If we felt like it, we could run a Carnot cycle for an
ideal gas and show that the ideal gas scale and the thermodynamic temperature scale are, in
fact, identical138 As a fun note in closing: unlike it statistical mechanics, in thermodynamics
temperatures must be positive, otherwise we see that Kelvin’s formulation of the 2nd law could
be violated, breaking the structure of much of what we’ve written above.

A.1.2 Clausius’ Theorem

Why (you may be wondering) are we pretending that these games – hooking up engines
to refrigerators, and defining Carnot Engines, and thinking about efficiencies – are deep
or interesting? Why did I claim that they would help us understand the thermodynamic
coordinate we should think of as conjugate to temperature? We only need one more piece,
and that is:

Clausius’ Theorem: For any cyclic process, with path parameterized by s∮
d̄Q(s)

T (s)
≤ 0, (A.11)

where the heat d̄Q(s) is an amount of heat delivered to the system by a reservoir or
machine at temperature T (s).

To prove this, we will (of course) hook the system up to a Carnot Engine. The reversibility
of the Carnot Engine is quite helpful: d̄Q(s) can be of any sign, so we can think of the whole
cyclic process as a series of infinitesimal cycles in which the CE delivers whatever d̄Q(s)
needs to be. Let the Carnot engine be at a given reference temperature T0, as in Fig. A.4A.
To prove the theorem, simply reinterpret the setup by pretending the Carnot engine and the
system are a single “device,” giving us the picture in Fig. A.4B.

This looks dumb, but we’re done! To deliver heat at a specified temperature, our efficiency
functions from above tell us that d̄Q0 = T0d̄Q/T (s). From this view the net extracted heat
is ∮

d̄Q0(s) =

∮
T0
d̄Q(s)

T (s)
≤ 0, (A.12)

where the last inequality is simply Kelvin’s formulation of the 2nd law: we can’t convert 100%
of some amount of heat to work.

As with so many of our Carnot engine manipulations, this probably feels trivial. However:
there are major consequences!

138This is not especially useful, but it does conceptually show that for both scales the temperature is not
something that depends on the properties of a particular material.
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Figure A.4: Clausius theorem setup (left) and reinterpretation (right)



Appendix B

Probability

B.1 Basic Definitions

Random variable: A random variable x is a measurable variable described by a set of
possible outcomes, S. This could be a discrete set, as for a coin: Scoin = {heads, tails}, or a
continuous range, as for a particle’s velocity: Svx = {−∞ ≤ vx ≤ ∞}. We call each element
of such a set as an event E ⊂ S

Probability We will assign a value, called the probability to each event, denoted p(E),
which has the following properties:

1. positivity: p(E) ≥ 0

2. additivity: p(A or B) = p(A) + p(B) if A and B are distinct.

3. normalization: p(S) = 1.

Now, we’re not not mathematicians, and so we won’t be starting from this definition and
proving things. You might wonder, as a practical matter, “how will we be determining p(E)
as we go about our lives?” By one of two ways:

1. Objectively (or, we might say, “experimentally,” as frequentists): p(E) is the frequency
of outcome in many trials:
p(E) = limN→∞NE/N

2. Subjectively (or, we might say, “theoretically,” as good Bayesians): We will determine
p(E) based on our uncertainty among all outcomes.

We will be using this “subjective” version of things repeatedly in statistical physics139, so we
will formalize this way of assigning probabilities later in the chapter.

139And, anyway, who has time to repeatedly measure the same thing over and over and over again?
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B.2 Properties of single random variables

Let’s focus on random variables which are continuous and real-valued (the specialization to
discrete ones is straightforward; we’ll see an example in the next section). Here are some
essential definitions:

Cumulative probability function: P (x) = probability(E ⊂ [−∞, x]). This must be a
monotonically increasing function, with P (−∞) = 0 and P (∞) = 1.

Probability density function (pdf): p(x) = dP (x)/dx, so that p(x)dx = probability(E ⊂
[x, x + dx]). The pdf must be everywhere positive, and normalized so that

∫∞
−∞ p(x)dx = 1.

Note: P (x) is dimensionless, which means p(x) has dimensions of [x−1].

Expectation value 〈F (x)〉 =
∫
dxp(x)F (x)

Change of variables Suppose x is a random variable and we have a function of it, F (x).
We can regard F (x) itself as a new random variable. The probability that we find F in some
interval between f and f + df is written pF (f)df , where140 |pF (f)df | = |pX(x)dx|, since the
probability in some differential area must should be invariant under a change of variables.
(see Fig. B.1).

Something that sometimes trips people up when changing variables: we need to add up
all the contributions of x that contribute. Thus, we first solve F (x) = f , and call the set of
solutions xi. We can then write:

pF (f) =
∑
i

p(xi)

∣∣∣∣dxdf
∣∣∣∣
xi

. (B.1)

In standard texts you will usually see the dx
df

written in terms of inverse functions, but the

meaning is clear (and it is the slope). Note that the factors of
∣∣∣dxdf ∣∣∣ are the Jacobians used

to change variables.

Simple example Suppose we have a random variable x with pdf pX(x) = 3x2

defined in the interval 0 < x < 1, and we look at a new random variable
Y = X2. This is easily invertible in the range, and we can write x(y) =

√
y,

and dx/dy = y−1/2/2. Thus

pY (y) = pX(x)

∣∣∣∣ 1

2
√
y

∣∣∣∣ =
3

2
(
√
y)2 1
√
y

=
3

2

√
y,

defined in the range 0 < y < 1.

140One can go back to the definition of the cumulative probability function to show this is true for mono-
tonically increasing or decreasing functions; it is more work to show it for the sorts of piecewise monotonic
functions we might want to consider



B.3. IMPORTANT DISTRIBUTIONS 217

Figure B.1: Changing variables from x to F (x)

2-valued example Suppose instead that we have a random variable x where

p(x) =
λ

2
exp (−λ|x|) ,

defined for any x on the real line. We want to know the probability density
function for the random variable F (x) = x2. There are, by inspection, two
solutions to F (x) = f (when f is positive!), and they are x = ±

√
f . The

derivatives we need are |dx/df | = | ± 1
2
√
f
|. Thus, we have:

pF (f) =
λ

2
exp(−λ

∣∣∣√f
∣∣∣) ∣∣∣∣ 1

2
√
f

∣∣∣∣+
λ

2
exp(−λ

∣∣∣−√f
∣∣∣) ∣∣∣∣ −1

2
√
f

∣∣∣∣ =
λ exp

(
−λ
√
f
)

2
√
f

,

for any f > 0 (and pF (f) = 0 for f < 0).

Moments We define the nth moment to be mn ≡ 〈xn〉 =
∫
dx xnp(x)

B.3 Important distributions

B.3.1 Binomial distribution

Given a discrete random variable with two outcomes, which occur with probability pA and
pB = 1− pA, the binomial distribution gives the probability that event A occurs exactly NA

times out of N trials. It is equal to

PN(NA) =

(
N

NA

)
pNAA pN−NAB ,

(
N

NA

)
=

N !

NA!(N −NA)!
. (B.2)

The characteristic function for the discrete distribution is

p̃N(k) = 〈e−ikNA〉 =
N∑

NA=0

N !

NA!(N −NA)!
pNAA pN−NAB e−ikNA =

(
pAe

−ik + pB
)N

. (B.3)
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This has the properties that we can easily relate the cumulant generating function for the
N -trial case to that of the 1-trial case:

ln p̃N(k) = N ln
(
PAe

−ik + pB
)

= N ln p̃1(k). (B.4)

For a single trial, NA can only be either zero or one, which means that we must have
〈Nm

A 〉 = pA for all powers m. Combining this property of the moments with the above
feature of the cumulants, we learn that the cumulants for the N -trial case are

〈NA〉c = NpA, 〈N2
A〉c = N

(
pA − p2

A

)
= NpApB, (B.5)

and higher order cumulants can be easily calculated. We’ll see that this type of feature –
where there is a trivial relation between an independent thing repeated N times and the
case of an individual trial – will be of great use as we build up statistical mechanics.

B.3.2 Poisson distribution

We’ll get at the Poisson distribution, a continuous pdf, relating it to the binomial distribution.
Consider a process in time where two properties hold. First, the probability of observing
(exactly) one event in the interval [t, t+dt] is proportional to dt in the limit dt→ 0. Second,
suppose the probability of observing an event in different intervals is uncorrelated141. Then,
the Poisson distribution is the probability of observing exactly M events in the interval T .

We get the details of the distribution by imagining dividing up the interval T into many
segments of length dt, say N = T/dt � 1 such that dt is so small the probability of
observing more than one event is negligible. So, in each segment we have an event occurring
with probability p = αdt and no event occurring with probability q = 1 − p. From our
expression for the binomial distribution, we immediately know the characteristic function
for this process:

p̃(k) =
(
pe−ik + q

)N
= lim

dt→0

(
1 + αdt((e−ik − 1)

)T/dt
= exp

(
α(e−ik − 1)T

)
, (B.6)

where the last equality is an example of the famous Euler limit formula. Knowing the char-
acteristic function, we can take the inverse Fourier transform to get the pdf:

p(x) =

∫ ∞
−∞

dk

2π
eikx exp

(
α(e−ik − 1)T

)
. (B.7)

This can be solved142 by expanding the exponential, and using∫ ∞
−∞

dk

2π
e−ik(x−M) = δ(x−M)

to get the probability of M events in a time T for a process characterized by α as

pαT (M) = e−αT
(αT )M

M !
. (B.8)

141An example might be found, e.g., in radioactive decay
142As you, student in this class, should explicitly verify!
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Additionally, the cumulants can be read off of the expansion of the log characteristic function

ln p̃αT (k) = αT (e−ik − 1) = αT
∞∑
n=1

(−ik)n

n!
⇒ 〈Mn〉c = αT. (B.9)

That is, while the binomial distribution has the property that every moment is the same,
the Poisson distribution has the property that every cumulant is the same.

B.3.3 Gaussian distribution

We will definitely, definitely, definitely be using Gaussians in this class. I hope you are not
surprised to hear this. Define the gaussian pdf as

p(x) =
1√

2πσ2
exp

(
−(x− λ)2

2σ2

)
. (B.10)

The characteristic function is computed by the usual means of completing the square inside
the integral, a trick I believe we all know:

p̃(k) =

∫
dx√
2πσ2

exp

(
−ikx− (x− λ)2

2σ2

)
= e−ikλ

∫
dy√
2πσ2

exp

(
−iky − y2

2σ2
+
k2σ2

2
− k2σ2

2

)
, for y = x− λ

= e−ikλ−
k2σ2

2

∫
dz√
2πσ2

exp

(
−z2

2σ2

)
, for z = y + ikσ2

= exp

(
−ikλ− k2σ2

2

)
. (B.11)

This manipulation shows that the Fourier transform of a Gaussian is, itself, a Gaussian. The
cumulants of this are easily identified:

ln p̃(k) = −ikλ− k2σ2

2
, (B.12)

immediately showing that

〈x〉c = λ, 〈x2〉c = σ2, 〈xn>2〉c = 0. (B.13)

So, the Gaussian is completely specified by its first two cumulants, and all moments involve
only products of one- and two-point clusters.

B.4 Properties of multiple random variables

Joint probability density function: We define, by analogy, the joint pdf p(x1, x2, . . . , xN)
as

p(x) = lim
{dxi→0}

prob. of outcome in {(x1, x1 + dx1), . . . , (xN , xN + dxN)}
dx1dx2 · · · dxN

. (B.14)
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The normalization of the joint PDF is

px(S) = 1 =

∫
dNxp(x), (B.15)

and iff the N random variables are independent, then the joint pdf simplifies to the product
of the individual probability density functions:

p(x) =
N∏
i=1

pi(xi). (B.16)

Joint characteristic function: This is just the N -dimensional Fourier transform:

p̃(k) = 〈exp(−ik · x〉 =

∫ (∏
i

dxie
−ikixi

)
p(x1, . . . , xN). (B.17)

Joint moments and cumulants: These are defined perfectly analogously with the mo-
ments and cumulants of single random variable distributions. We previously noted that
moments are related to the coefficient of the relevant power of k in the expansion of the
characteristic function and its log; more generally, we can express these as the following
derivatives:

〈xm1
1 xm2

2 · · ·x
mN
N 〉 =

[
∂

∂(−ik1)

]m1

· · ·
[

∂

∂(−ikN)

]mN
p̃(k)|k=0 (B.18)

〈xm1
1 xm2

2 · · ·x
mN
N 〉c =

[
∂

∂(−ik1)

]m1

· · ·
[

∂

∂(−ikN)

]mN
ln p̃(k)|k=0 . (B.19)

As a simple – but perhaps the most important – example, the “co-variance” between two
random variables is

〈x1x2〉c = 〈x1x2〉 − 〈x1〉〈x2〉. (B.20)

Note that the graphical expansion we wrote earlier still applies. All that is needed is
to label the points under consideration by the variables they correspond to. See Fig. B.2,
in which this is done via color.

Figure B.2: Graphical expansion of a joint moment
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Unconditional probability: The unconditional pdf describes the pdf for a subset of
random variables independent of what the others are doing:

p(x1, . . . , xm) =

∫ ( N∏
i=m+1

dxi

)
p(x1, . . . , xN). (B.21)

For example, particles in a gas would generically have a pdf over both its position and
velocity, p(x,v), but we might only care about the distribution of positions, so we would
integrate out the velocities:

p(x) =

∫
d3vp(x,v)

Conditional probability: The conditional pdf describes the behavior of a subset of the
random variables given specified values for the other random variables. Following the above
example, suppose we are interested in the conditional probability of velocities given a set of
position, denoted p(v|x). This should be proportional to the full joint PDF:

p(v|x) =
p(x,v)

A
,

where the constant of proportionality is just the probability of having that value of position
in the first place:

A =

∫
d3vp(x,v) = p(x).

Note that in the case of independent random variables, the conditional probability is the
same as the unconditional probability.

Joint Gaussian distribution You might have thought the natural generalization of Eq.
B.10 was

p(x) =
1√∏N

n=1 2πσ2
n

exp

(
−1

2

N∑
n=1

−(xn − λn)2

σ2
n

)
. (B.22)

but this neglects the potential for cross-correlations! The most general form is, instead,

p(x) =
1√

(2π)N detC
exp

(
−1

2

N∑
n,m=1

(xn − λn)(xm − λm) (C)−1
nm

)
, (B.23)

where the matrix C is symmetric, and for p(x) to be a well-defined probability the matrix
C must be positive definite. We can write this more compactly as

p(x) =
1√

(2π)N detC
exp

(
−1

2
(x− λ)TC−1(x− λ)

)
. (B.24)

The matrix C is called the covariance matrix. If one goes through and performs the fourier
transform on the above joint pdf, one finds

p̃(k) = exp

(
−ik · λ− 1

2
kTCk

)
, (B.25)
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or, in index notation,

p̃(k) = exp

(
−ikmλm −

1

2
kmCmnkn

)
. (B.26)

The latter re-writing lets us immediately read off the joint cumulants of the joint Gaussian
distribution:

〈xm〉c = λm, 〈xmxn〉c = Cmn, (B.27)

with all higher-order cumulants vanishing.

Wick’s theorem: Note that there is an important special case of joint Gaus-
sian distributions when λ = 0. Consider the joint cumulant

〈xn1
1 x

n2
2 · · ·x

nN
N 〉 ,

and think about the combinatorics of the graphical expansion we’ve seen
above.

First, if the sum of the ni is odd, then in the graphical expansion there is no
way to avoid a term with an odd-power cumulant, and in this special case of
the joint Gaussian distribution with λ = 0, all such terms are zero!
Second, if the sum is even, we know that there will only be contributions from
combinations of covariances : all even-power cumulants with power greater
than two vanish because, again, we are dealing with the joint Gaussian. Thus,
the cumulant can be obtained by all ways of summing over pairs of the random
variables. For example,

〈xixjxkxl〉 = CijCkl + CikCjl + CilCjk,

where it didn’t matter if the i, j, k, l were distinct. For instance:〈
x2

1x2x3

〉
= C11C23 + 2C12C13.

This property of the joint Gaussian distribution is sometimes summarized as:

〈xn1
1 x

n2
2 · · · x

nN
N 〉 =

{
0 if

∑
α nα is odd∑

(all pairwise contractions of covariances) else

In this formulation, we see the analogy of Wick’s Theorem applied to fields.



Appendix C

Kinetic Theory – from BBGKY to
Boltzmann143

C.1 Boltzmann a la BBGKY

So, now that we know where we are heading, let’s derive the Boltzmann equation with
a bit more rigor. After having done so, we’ll ask ourselves about the consequences of the
Boltzmann equation. What do its solutions tell us about the behavior of equilibrium states?
What does it say about the origin of irreverisbility?

Figure C.1: “Eleganz sei die Sache der Schuster und Schneider,” surely what every
student hopes to hear before a lecture

143Kardar, Tong, Huang
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C.1.1 BBGKY for a dilute gas

You may have noticed that so far we have not really used the fact that we are studying a
dilute gas – that is about to change as we are finally in a position to make some physically
motivated approximations to the BBGKY hierarchy. Let’s start by explicitly writing the first
two levels of the hierarchy, where for notational ease we’ll write the derivative of the pairwise
potential as a force:

∂V (qi−qj)
∂qi

=
∂Φij
∂qi

, which is the contribution to the force on i from j. Our
first two levels are:[

∂

∂t
− ∂U

∂q1

· ∂

∂p1

+
p1

m
· ∂

∂q1

]
f1 =

∫
dV2

∂Φ12

∂q1

· ∂

∂p1

f2, (C.1)

[
∂

∂t
− ∂U

∂q1

· ∂

∂p1

− ∂U

∂q2

· ∂

∂p2

+
p1

m
· ∂

∂q1

+
p2

m
· ∂

∂q2

− ∂Φ12

∂q1

·
(

∂

∂p1

− ∂

∂p2

)]
f2 =∫

dV3

[
∂Φ13

∂q1

· ∂

∂p1

+
∂Φ23

∂q2

· ∂

∂p2

]
f3. (C.2)

Relative importance of terms

Would you like to write/TEX the next level? Neither would I. Let’s think physically about
the terms in the above two levels: We’ve arranged things so that every term in the square
brackets has dimensions of inverse time, so lets estimate the typical magnitudes of the various
terms! We’re studying a gas, and a reasonable speed for a gas particle at room temperature
is on the order of c = 100m/s; to make a characteristic time, the typical length scale will
depend on the nature of the term in question.

1. First, there is a characteristic time related to the external potential, like τ−1
U ∼ ∂U

∂q
· ∂
∂p

:
these are spatial variations in the external potential, which we will typically think of
taking place over basically macroscopic distances, where the characteristic length L is
at least a millimeter. Very roughly, that would give us:

τU ∼ L/v ∼ 10−5s

2. Next there are terms that scale like a typical collision duration, like τ−1
c ∼ ∂Φ

∂q
· ∂
∂p

; that
is, these terms have a magnitude which should be commensurate with the duration
over which two particles are within a characteristic effective range of the potential, d.
If we restrict ourselves to reasonably short-range interaction potentials (van der Waals,
or, say, Lennard-Jones interactions), this effective distance is on the scale of angstroms,
d ∼ 10−10m. Very roughly, that would give us:

τc ∼ d/v ∼ 10−12s

3. Finally, there are collisional terms like

τ−1
x ∼

∫
dV

∂Φ

∂q
· ∂
∂p
N
ρs+1

ρs
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The integral has some non-zero contribution over a volume that scales like the char-
acteristic volume of the potential, d3, and the ratio Nρs+1/ρs is like a probability of
finding an additional particle in the vicinity of the s particles, which should be of the
order of the particle number density, n = N/V ∼ 1026m−3. Combining this and the
above gives, very roughly:

τx ∼
τc
nd3
∼ 1

nvd2
∼ 10−8s

What does all of this buy us? Well, we see that the second level (and all higher-s levels) of
the hierarchy is balance between three competing terms: something like τ−1

U , something like
τ−1
c , and something like τ−1

x . So, as long as we are in the dilute limit, we see that the terms
on the RHS of Eq. C.2 are orders of magnitude smaller than the terms on the LHS, and so
we approximate these levels of the hierarchy just by the balance of terms that are like τ−1

U

and τ−1
c .

In contrast, the first level is different. It has no terms that are like τ−1
c , and so we have

no choice but to keep all of the terms.

C.1.2 Truncating the hierarchy, and continued simplifications

This illustrates a common strategy in kinetic (and other) theories...at first glance the hier-
archy does not seem helpful, because it is not closed (i.e., to solve for ρs one needs to know
ρs+1). However, we can try to come up with a model/theory/approximation that governs the
higher-order levels of the hierarchy; the quality of our predictions will then (hopefully) be
related to the quality of our closure of the theory. In the present case, explicitly, we have[

∂

∂t
− ∂U

∂q1

· ∂

∂p1

+
p1

m
· ∂

∂q1

]
f1 =

∫
dV2

∂Φ12

∂q1

· ∂

∂p1

f2, (C.3)

[
∂

∂t
− ∂U

∂q1

· ∂

∂p1

− ∂U

∂q2

· ∂

∂p2

+
p1

m
· ∂

∂q1

+
p2

m
· ∂

∂q2

− ∂Φ12

∂q1

·
(

∂

∂p1

− ∂

∂p2

)]
f2 = 0.

(C.4)
You may wonder if this closure is sufficient to break the time-reversal symmetry of the
underlying equations of motion. It is not! At this stage we have the collisions which will
in principle allow us to relax to equilibrium, but everything is still time-reversible. So we
proceed with a sequence of physically motivated approximations...

Let’s focus on the evolution of the two-body term. In particular, we expect that most of
the changes we are interested in are those that are due to the changes wrought by collisions,
rather than the slower changes of evolutions under the effect of the external potential. So,
Eqs. C.3,C.4 we will ignore the terms related to ∂U

∂q
. Additionally, we see that in Eq. C.4 the

collision term depends not on absolute positions but on relative positions144, so let’s switch
coordinates to the center of mass, relative position frame (and similarly for momenta):

R =
1

2
(q1 + q2), r = (q1 − q2),P = (p1 + p2),p =

1

2
(p1 − p2).

144(which makes sense – they’re collisions!)
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We now have a distribution function f2(R, r,P ,p, t), where the distribution function de-
pends on the center of mass variables, R,P “slowly”, and has a much faster dependence on
the the relative coordinates r,p, which vary over the small distance d and the time scale τc.

Since the relative distributions in f2 vary so quickly, we assume that in a since f2 reaches
equilibrium and then enters the dynamics of f1. That is, we focus in on time intervals that
are long compared to τc (but perhaps short compared to τU), to get the “steady state”
behavior of f2 at small relative distances that are relevant to the collision term. Combining
the approximations in the above paragraph, we have(

p

m
· ∂
∂r
− ∂Φ(r)

∂r
· ∂
∂p

)
f2 ≈ 0. (C.5)

This is the right form to allow us to start massaging the collision term in the RHS of the
equation for f1:(

∂f1

∂t

)
coll

=

∫
dV2

∂Φ12

∂q1

· ∂

∂p1

f2 =

∫
dV2

∂Φ(r)

∂r
·
[
∂

∂p1

− ∂

∂p2

]
f2

=
1

m

∫
|r|≤d

dV2(p1 − p2) · ∂f2

∂r
. (C.6)

In the first equality (where we put in an extra ∂
∂p2

, we’re just noting that if we integrate by

parts that term vanishes (we’ve added a derivative of something we’re integrating over...),
and in the next line we’re plugging in the results of Eq. C.5.

C.1.3 Scattering theory and the Boltzmann Equation

This part is not crucial to our conceptual discussion, but it is what allows us to massage
the above expression into the Boltzmann equation form. Let’s think more about classical
two-particle collisions, which begin with momenta pi = mvi and end with momenta p′i =
mv′i. We proceed to transform into the rest from of the first particle, so that it is being
bombarded with oncoming particles that have velocity v2−v1, and these oncoming particles
are uniformly distributed over the plan normal to that oncoming velocity. We define several
relevant quantities in Fig. C.2. Geometrically, we see that the solid angles are dσ = b dbdφ
and dΩ = sin θ dθdφ. The number of particles scattered into dΩ per unit time is related
to the flux of particles hitting the plane and the other solid angle, Idθ, typically written
I dσ
dΩ
dΩ = Ibdbdφ, where the differential cross section is∣∣∣∣ dσdΩ

∣∣∣∣ =
b

sin θ

∣∣∣∣dbdθ
∣∣∣∣ =

1

2

∣∣∣∣ d(b2)

d cos θ

∣∣∣∣ .
What we are really saying here is that for a fixed relative incoming velocity there is a par-
ticular relationship between the impact parameter, b, and the scattering angle, θ, and this
is something you can figure out for any particular classical pair potential Φ.

If we compare these types of scattering expressions to what we had in the “intuitive” ver-
sion’s expressions Eq. 5.45, we see that when we talked about the rate of scattering into
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Figure C.2: Differential cross section for a scattering process b is the impact param-
eter, i.e. the distance from the asymptotic trajectory to the central line, which denotes a
head-on collision with the particle (shown as a blue disk here); b and the polar angle φ to-
gether parameterize the plane normal to the incoming particle. The scattering angle θ is the
angle by which the incoming particle is deflected. The solid angles dσ and dΩ are illustrated,
with relations between them in the text.

some small area of momentum space we can express this in terms of the differential cross
section:

ω(p,p2,p
′
1,p

′
2)d3p′1d

3p′2 = |v1 − v2|
∣∣∣∣ dσdΩ

∣∣∣∣ dΩ

.

Great. Let’s go back to our collision integral:(
∂f1

∂t

)
coll

=
1

m

∫
|r|≤d

dV2(p1 − p2) · ∂f2

∂r
. (C.7)

Let’s transform to the coordinate system illustrated in Fig. C.3: the direction parallel to the
relative velocity is parameterized by x, we have our interaction range of the potential d, and
the plane normal to the relative velocity is still parameterized by φ and b. Using all of the

Figure C.3: Coordinate system for two-particle collision
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above we can write(
∂f1

∂t

)
coll

=

∫
d3p2|v1 − v2|

∫
dφdb b

∫ x2

x1

∂f2

∂x

=

∫
d3p2d

3p′1d
3p′2ω(p′1,p

′
2,p,p2) [f2(x2)− f2(x1)] . (C.8)

Getting to Boltzmann

Working out the classical scattering theory to massage the collision term into the form of
Eq. C.8, all that’s left is to decide on the same simplifications for f2 itself. To finish the
derivation of the Boltzmann equation and write a closed equation for f1, we make a final,
big approximation (“the assumption of molecular chaos”) that the momenta of the two
particles are uncorrelated:

f2(q, q,p,p2) = f1(q,p)f1(q,p2). (C.9)

This, perhaps, doesn’t look so strong an assumption on its surface, but looking at how f2

enters the rate of collision expressions we’ve written down, we see that this amounts to
explicitly assuming that the momenta are uncorrelated before the collision (and then the
outgoing momenta follow from conservation and details of the scattering process). This has,
quite sneakily, been a means to smuggle in an arrow of time. Finally, we imagine coarse
graining over space (on the scale of d) so that we evaluate f2(x1) and f2(x2) at the same
location, q. We arrive at Eq. 5.44,

∂f1

∂t
− {H1, f1} =

∫
d3p2d

3p′1d
3p′2 ω(p′1,p

′
2|p,p2) [f1(q,p′1)f1(q,p′2)− f1(q,p)f1(q,p2)] .

(C.10)



Appendix D

Quantum Statistical Mechanics

In Chapter 6 we drew out a logical chain of reasoning that combined ideas from probability
theory and kinetic theory, and made one massive assumption about the nature of the mi-
crocanonical ensemble, in order to derive the structure of thermodynamics (in the so-called
N → ∞ “thermodynamic limit”). Here we’ll see what happens if the laws governing mi-
croscopic systems are quantum mechanical rather than classical; we will see that all of the
logical steps are the same as in the classical case, but some of the details turn out to be
different.

So, in recapitulating the same logic given different microscopic goals, part of the aim of
this chapter is simply to solidify our understanding about what statistical mechanics is trying
to do. We will also see the traditional resolution to Gibbs’ paradox, finally understanding
why there are factors of h and N ! floating around otherwise classical expressions. We will
also see that collections of ideal (non-interacting) quantum particles can be quite a bit
richer than their classical counterparts. In that context, we will get our first taste of a phase
transition, and we will meet some of the same mathematical technology we’ll use in our
study of interacting systems later in the course.

D.1 Microstates, observables, and dynamics

D.1.1 Quantum microstates

As we begin to trace out the logic of statistical mechanics again, let’s write down a few
definitions145 to get us more properly started on quantum statistical mechanics. Classically,
we started with microstates for N particles that were specified by a point in 6N -dimensional
phase space and governed by Hamiltonian evolution equations. Quantum mechanically, of
course, positions and momenta are not independently observables, so this is a poor choice
of microstate. Instead, a quantum system is specified by a unit vector in a Hilbert space146,

145I will, naturally, assume you already know quantum mechanics, so here we’re just dotting some i’s
146A generalization of Euclidean space: a Hilbert space H is a vector space equipped with an inner product

whose induced distance function makes H a complete metric space

229
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|ψ〉. Given a set of orthonormal basis vectors |n〉 we can write the microstate as

|ψ〉 =
∑
n

〈n|ψ〉|n〉, (D.1)

where the 〈n|ψ〉 are complex numbers, where we keep in mind that 〈ψ|n〉 = 〈n|ψ〉∗, the com-
plex conjugate. Probably the first basis we learn about is composed of the spatial coordinates,
|{qi}〉, for which

ψ (q1, q2, . . . , qN) ≡ 〈{qi}|ψ〉
is the wavefunction.

Finally, of course: as a unit vector, ψ is normalized so that

〈ψ|ψ〉 =
∑
n

〈ψ|n〉〈n|ψ〉 = 1, (D.2)

D.1.2 Quantum observables

In Chapter 3 we introduced classical observable functions of phase space, A ({p, q}). Quan-
tum mechanically, observables get promoted to operators by substituting the position and
momentum operators for the position and momentum variables in the classical expressions147,
A({p̂, q̂}). Just as classically we had the Poisson bracket, {pi, qj} = δij, here we have the
commutation relation [p̂a, q̂b] = p̂aq̂b − q̂bp̂a = ~

i
δab.

Unlike in classical mechanics, in addition to the (classical) probabilistic nature of our
ensembles, quantum mechanically our observables themselves are matrices that don’t have
definite values; i.e., they are not uniquely determined for a particular microstate. This ad-
ditional randomness means the observables are themselves random variables, so we must
content ourselves with their expectation values, defined as

〈A〉 = 〈ψ|A|ψ〉 =
∑
m,n

〈ψ|m〉〈m|A|n〉〈n|ψ〉. (D.3)

Since we demand real observables, the operators A must be Hermitian148: A† = A.

D.1.3 Time evolution of states

Classically we got a lot of mileage out of the hamiltonian evolution of the phase space
coordinates. The quantum mechanical state vector has a time evolution given by

i~
∂

∂t
|ψ(t)〉 = H|ψ(t)〉. (D.4)

It is often convenient to work in the basis which diagonalizes the Hamiltonian (i.e., the
basis formed by the energy eigenstates), satisfying H|n〉 = En|n〉 where En are the “eigen-
energies.” In such a basis, exploiting the orthonormality of the basis 〈m|n〉 = δmn lets us
write the time evolution of the state as

i~
d

dt
〈n|ψ(t)〉 = En〈n|ψ(t)〉 ⇒ 〈n|ψ(t)〉 = exp

(
−iEnt

~

)
〈n|ψ(0)〉. (D.5)

147after, of course, properly symmetrizing products, for instance pq → (pq + qp)/2
148which is why we worried about symmetrizing position and momentum when going from classical to

quantum operators.
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D.2 The density matrix and macroscopic observables

Classically, macrostates are specified by just a few thermodynamic coordinates, and we
studied ensembles of large numbers of microstates µs, which were equipped with a probability,
ps ≡ p(µs) and which corresponded to a given macrostate. We often don’t have precise
knowledge of the microstate (i.e., the system is not a pure state); more generally we expect
it to be a mixed state, existing as an incoherent mixtures of being in a variety of quantum
states149.

We similarly start out with a mixed state, an incoherent mixture of states |ψα〉 with
probabilities pα. The ensemble average of the expectation value of an observable in such a
mixed state is

¯〈A〉 =
∑
α

pα〈ψα|A|ψα〉 =
∑
α,m,n

pα〈ψα|m〉〈n|ψα〉〈m|A|n〉

=
∑
m,n

〈m|A|n〉〈n|ρ|m〉 = Tr (ρA) , (D.6)

where we have introduced the density matrix ρ, which in a given basis is

ρ =
∑
α

pα|ψα〉〈ψα|, (D.7)

and where the trace of an operator is the sum over the diagonal elements, Tr (M) =∑
α〈Φα|M |Φα〉, which is independent of which basis {Φα} you use.

D.2.1 Basic properties of the density matrix

1. Sufficient: All measurements in quantum mechanics involve expectation values of op-
erators. Thus, the density matrix contains sufficient information for anything we might
want to do.

2. Positive definite: The eigenvalues of ρ are all positive, since for any state

〈φ|ρ|φ〉 =
∑
n

pn〈φ|ψn〉〈ψn|φ〉 =
∑
n

pn|〈φ|ψn〉|2 ≥ 0.

3. Normalized: Since the ψα are themselves normalized, we have

Tr (ρ) =
∑
n

pn〈ψn|ψn〉 =
∑
n

pn = 1.

4. Hermitian: By inspection, the density matrix is Hermitian, with ρ† = ρ.

149Not in a superposition, of states, by the way. A quick example: take a spin in the up-down basis. The
superposition state 2−1/2(|↑〉+ |↓〉) is a diagonally polarized state. An unpolarized spin is a mixture of half
up and half down, described by a density matrix 1

2 (|↑〉〈↑|+ |↓〉〈↓|). The latter is what we mean.



232 APPENDIX D. QUANTUM STATISTICAL MECHANICS

Time evolution of the density matrix

Classically we had Liouville’s theorem for the evolution of the density, dρ
dt

= ∂ρ
∂t
− {H, ρ};

what do we have here? Again working in the energy eigenbasis, we can write

i~∂tρ =
∑
n

pni~∂t (|ψn〉〈ψn|)

=
∑
n

pn [H|ψn〉〈ψn| − |ψn〉〈ψn|H]

= Hρ− ρH = [H, ρ] . (D.8)

D.3 Quantum ensembles

With this structure, we can follow the same logic that we did in the classical case: we define
equilibrium by having none of the averages of the observables vary with time, which can be
satisfied if we choose an equilibrium density matrix so that ∂tρ = 0. Just as when we were
dealing with Poisson brackets, we accomplish this by having the density matrix be a function
of the Hamiltonian itself, along with any conserved quantities A, ρ(H,A1, . . .), that satisfy
[H,Ai] = 0.

D.3.1 Quantum microcanonical ensemble

We define the microcanonical ensemble, specified by (E,x, N), but enforcing a fixed value
for the ensemble average energy. We choose our density matrix

ρ(E) =
δ(H − E)

Ω(E)
,

where in the energy eigen-basis we can write this as

〈m|ρ|n〉 =
∑
α

pα〈m|ψα〉〈ψα|n〉 =

{
Ω−1 if En = E, and m = n
0 otherwise

(D.9)

The first of those two conditions we recognize as the equivalent of the assumption of equal a
priori probabilities The second, quantum mechanical condition is the assumption of random
a priori phases, in which we don’t get contributions from off-diagonal terms (even if they
have degenerate and correct energies) because we assume the mixed state is in an incoherent
superposition of the basis states. Finally, note that from the normalization condition on the
density matrix, Ω(E) is again just counting the number of (eigen)states of H with the correct
energy E.

D.3.2 Quantum canonical ensemble

You know what’s coming: Now we’re fixing temperature T = β−1 by putting our quantum
system in contact with a reservoir. Considering the above two assumptions for the combined
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system, we find that the density matrix for the system of interest is

ρ(β) =
e−βH

Z(β)
, (D.10)

where the normalization condition on the density matrix leads to the quantum canonical
partition function for N particles,

ZN(β) = Tr
(
e−βH

)
=
∑
n

e−βEn . (D.11)

As one would expect from the above formulas, the expectation value of a physical observable
is given by

〈A〉 = Tr
(
ρ̂Â
)

=
1

Z(β)
Tr
(
Âe−βĤ

)
=

Tr
(
Âe−βĤ

)
Tr
(
e−βĤ

) (D.12)

D.3.3 Quantum grand canonical ensemble

For completeness – and because we’ll see it again soon – in the grand canonical ensemble we
no longer fix the number of particles150. The density matrix is

ρ(β, µ) =
e−βH+βµN

Q
, (D.13)

where the grand canonical partition function is

Q(β, µ) = Tr
(
e−βH+βµN

)
=

∞∑
N=0

eβµNZN(β). (D.14)

D.3.4 Example: Free particle in a box

Suppose we care about the quantum canonical ensemble version of a single particle in a box
of volume V . Working in the coordinate basis, the Hamiltonian is

H =
p2

2m
= − ~2

2m
∇2, (D.15)

which has energy eigenstates |k〉 specified by

〈r|k〉 =
eik·r√
V
, Ek =

~2k2

2m
. (D.16)

What are the allowed k? Assuming for simplicity periodic boundary conditions for a cube
of side length L, we can have k = 2π

L
(lx, ly, lz), where the lα are integers. So, the space of

microstates is enormously larger than in the classical case: rather than 6 degrees of freedom

150Microstates with an indefinite number of particles span a Fock space, which is a set of Hilbert spaces
associated with zero or more quantum particles
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per particle, one can have countably infinite numbers of states per particle. In the limit
L→∞ the partition function becomes

Z =
∑
k

e−
β~2k2
2m = V

∫
d3k

(2π)3
e−

β~2k2
2m

=
V

(2π)3

(√
2πmkBT

~

)3

=
V

λ3
, (D.17)

for λ = h/
√

2πmkBT , which indeed coincides with our classical calculation when we use the
right (adjusted) phase space measure.

What about the elements of the density matrix itself? We can compute

〈r′|ρ|r〉 =
∑
k

〈r′|k〉e
−βEk

Z
〈k|r〉

=
λ3

V

∫
V

d3k

(2π)3

e−ik·(r−r
′)

V
e−

β~2k2
2m

=
1

V
exp

(
−π (r − r′)2

λ2

)
. (D.18)

What does this mean? The diagonal elements are all 〈r|ρ|r〉 = V −1, the common expectation
that the probability for finding the particle is uniform throughout the box. The off-diagonal
terms are a quantum-mechanical effect, measuring the “spontaneous transition” between
coordinates r and r′, giving a measure of the “intensity” of the wave packet some distance
from the center of the packet. Said another way, the spatial extent of the packet is a measure
of the uncertainty involved in locating the particle position. This quantum mechanical effect
vanishes in the β → 0 limit, as the density matrix elements approach delta functions.

Finally, we can compute the expectation value of the Hamiltonian itself, 〈H〉 = Tr
(
Ĥρ̂
)

.

We’ve already calculated the partition function Z = Tr
(
e−βĤ

)
, so the result is the last line

of:

〈H〉 = Tr
(
Ĥρ̂
)

=
Tr
(
Ĥe−βĤ

)
Tr
(
e−βĤ

)
= − ∂

∂β
ln Tr

(
e−βĤ

)
=

3

2
kBT. (D.19)

This result should be...expected.

D.3.5 Example: An electron in a magnetic field

Suppose we care about the quantum canonical ensemble version of a single electron in a
magnetic field. The election has spin ~σ̂/2 and a magnetic moment µB = e~

2mc
(nothing to do
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with the chemical potential; it’s just standard notation to use µ here, too), where σ̂ is the
Pauli spin operator.

When we apply a magnetic field, B, the electron can have either spin up or spin down.
If we take the applied field to be along ẑ, the configurational part of the Hamiltonian is

Ĥ = −µBσ̂ ·B. (D.20)

Life is easier when we work in the basis in which the Hamiltonian is diagonal, i.e.,

Ĥ = −µBBσ̂z, (D.21)

where

σ̂x =

(
0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
, σ̂z =

(
1 0
0 −1

)
. (D.22)

From this it is straightforward to calculate the density matrix:

ρ̂ =
e−βĤ

Tr
(
e−βĤ

)
=

1

eβµBB + e−βµBB

(
eβµBB 0

0 e−βµBB

)
, (D.23)

from which we can calculate, e.g., the expectation value for σz:

〈σz〉 = Tr (ρ̂σ̂z) =
eβµBB − e−βµBB

eβµBB + e−βµBB
= tanh (βµBB) , (D.24)

an expression I’m quite sure you’ve seen in other classes.

D.4 The classical limit of a quantum partition function

With some of the above definitions in hand, but before we move on to quantum statistical
mechanics, it is interesting to note that we already have enough to be able to figure out
at least part of the corrected phase space measure that we introduced in the last chapter.
In this short section let’s leave aside the question of where 1/N ! comes from and see why
Planck’s constant appears even in classical statistical mechanics. Recall that for a single
classical particle the canonical partition function can be written as an integral over phase
space:

Z1 =
1

h3

∫
d3qd3pe−βH(p,q).

At the time the 1/h was required to get the units right (i.e., so that Z is dimensionless), but
where there was a particular value of h to use: Planck’s constant h = 2π~ ≈ 6.6× 10−34Js.
Why is there this quantum-mechanical number in our classical formulas? We don’t need to
wave our hands, let’s derive it.

To keep things simple, let’s consider a single particle in one dimension, so that it’s Hamil-
tonian is

Ĥ =
p̂2

2m
+ V (q̂),
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where p̂ is the momentum operator and q̂ is the position operator.
Writing the eigenstates in the energy basis, in which state |n〉 has energy En, the quantum

partition function is

Z =
∑
n

e−βEn =
∑
n

〈n|e−βĤ |n〉, (D.25)

where by the exponential of the operator we mean

e−βĤ =
∞∑
n=0

(−1)n
(βĤ)n

n!
.

As usual we are free to insert the identity operator, constructed by summing over any
complete basis of states. We’ll do this with both the position eigenvectors and the momentum
eigenvectors:

1 =

∫
dq|q〉〈q|, 1 =

∫
dp|p〉〈p|.

We first add two copies of the position-eigenstate identity to the partition function, on either
side of the e−βĤ :

Z =
∑
n

〈n|
∫
dq|q〉〈q|e−βĤ

∫
dq′|q′〉〈q′|n〉

=

∫
dqdq′〈q|e−βĤ |q′〉

∑
n

〈q′|n〉〈n|q〉

=

∫
dq〈q|e−βĤ |q〉, (D.26)

where in the last line we replaced
∑

n |n〉〈n| with the identity operator, used 〈q′|q〉 = δ(q′−q),
and integrated over q′. So far the result of this manipulation is to replace a sum over energy
eigenstates with an integral over position eigenstates. This is really just another expression
of the fact that we can write the partition function in a basis-independent way:

Z = Tr
(
e−βĤ

)
, (D.27)

but is perhaps a helpful warm-up.
Let’s try to take the classical limit of this partition function, by which we mean that we’ll

neglect terms that are of order h. We exploit this by trying to factorize e−βĤ into a position
and a momentum piece, using the Baker-Campbell-Hausdorff formula151

eÂeB̂ = exp

(
Â+ B̂ +

1

2
[Â, B̂] + · · ·

)
. (D.28)

What does that mean for us? Assuming that V (q̂) is a reasonably well-behaved potential
and recalling that [q̂, p̂] = i~, Taking the classical limit means we neglect any corrections to
the naive factorization, writing

e−βĤ = e−βp̂
2/(2m)e−βV (q̂)eO(~) ≈ e−βp̂

2/(2m)e−βV (q̂). (D.29)

151In general, eÂeB̂ 6= exp
(
Â+ B̂

)
, and the BCH formula lets you work out the correction in terms of a

series of nested commutators of Â and B̂.
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From here, we proceed by turning exponentiated operators into ordinary functions (again,
recalling what the exponentials of operators mean). We first take care of the position oper-
ators:

Z =

∫
dq 〈q|e−βp̂2/(2m)e−βV (q̂)|q〉

=

∫
dq e−βV (q)〈q|e−βp̂2/(2m)|q〉.

To proceed, we insert two complete sets of momentum states, use 〈q|p〉 = 1√
2π~e

ipq/~, and

notice that objects like 〈p|e−f(p̂)|p′〉 will give us delta functions to relate p′ to p:

Z =

∫
dqdpdp′ e−βV (q)〈q|p〉〈p|e−βp̂2/(2m)|p′〉〈p′|q〉

=

∫
dqdpdp′ e−βV (q)〈p|e−βp̂2/(2m)|p′〉 1

2π~
ei(p−p

′)q/~

=
1

h

∫
dqdp e−βH(p,q). (D.30)

Thus, we see the natural consequence of the underlying quantum mechanical description
even when we take the classical limit and do our best to ignore ~.

D.5 Quantum indistinguishability

The previous section motivated why Planck’s constant appears in the classical partition
function. In this and the next section we will work out a position-space representation of
the canonical density matrix for indistinguishable quantum particles, and show precisely
how the classical limit of this expression lets us see where the corrected Gibbs phase-space
measure actually comes from. The first step, which we tackle in this section, is to write down
eigenstates of an N -particle Hamiltonian that have either Bosonic or Fermionic symmetry.

D.5.1 Two identical particles

Suppose we were to write down a simple two-particle Hamiltonian, for two particles of equal
mass and with an interaction potential that depended only on the relative separation:

H(1, 2) =
p2

1

2m
+
p2

2

2m
+ V (|r1 − r2|).

Clearly this Hamiltonian is symmetric under the exchange of particle label,H(1, 2) = H(2, 1).
Classically, our labeling of particles is meaningful, but for identical quantum mechanical
particles these labels are arbitrary and convey no physical meaning.

For instance, the probability of finding two identical particles at positions r1 and r2 is
given by |ψ(r1, r2)|2 = |ψ(r2, r1)|2. As long as the wavefunction is single-valued this leads to
two distinct possibilities152:

ψ(r1, r2) =

{
ψ(r2, r1) for bosons
−ψ(r2, r1) for fermions

. (D.31)

152Because the square of the exchange operator must be the identity matrix. For single-valued functions



238 APPENDIX D. QUANTUM STATISTICAL MECHANICS

D.5.2 N identical particles

Starting with a wavefunction for N particles, ψ(r1, . . . , rN), we generalize the above by
introducing a permutation operator P , of which there are N ! possible permutation operators
we might consider for our set of particles. We’ll adopt the notation

Pψ(r1, . . . , rN) =

{
ψ(r1, . . . , rN) for bosons

(−1)Pψ(r1, . . . , rN) for fermions
(D.32)

to represent the two classes of Hilbert spaces we might find ourselves in. Here we take (−1)P

to represent the parity153 of the permutation under question: if P can be represented by an
even number of pairwise particle exchanges then (−1)P = 1, and if it can be represented by
an odd number of pairwise exchanges the (−1)P = −1.

Note that the Hamiltonian for the particles, H, must be symmetric: PH = H, but the
Hamiltonian can admit eigenstates of different symmetries under the action of the permuta-
tion operator. The same Hamiltonian will thus allow eigenstates of either total symmetry or
total anti-symmetry: the statistics one want to study must be specified independently of the
Hamiltonian, and so one studies only a subspace (either the fermionic subspace, in which
eigenstates are anti-symmetric, or the bosonic subspace, in which eigenstates are symmetric)
of the total Hilbert space. Let’s see a convenient way of representing these subspaces.

D.5.3 Product states for distinguishable, non-interacting particles

We consider an N -particle Hamiltonian which is just a collection of single-particle Hamilto-
nians154 for free particles in a box of volume V :

H =
N∑
α=1

p2
i

2m
=

N∑
α=1

− ~2

2m
∇2
α. (D.33)

Each of the single-particle Hamiltonians can be diagonalized by writing it in the energy
basis, |kα〉 with energy ~2k2

α/(2m), and we will build our N -particle wavefunction out of
these one-particle eigen-pieces.

We define a product state as

|k1, . . . ,kN〉× ≡ |k1〉|k2〉 · · · |kN〉, (D.34)

where in the coordinate representation the product state is

〈r1, . . . , rN |k1, . . . ,kN〉× =
1

V N/2
exp

(
−i
∑
α

kα · rα

)
, (D.35)

this restriction means that there can only be a complex phase shift under the operation of a single application
of the exchange operator, so the square being the identity means the phase shift can only be 0 (bosons) or
π (fermions). You may have heard, though, of anyons! These have multi-valued wavefunctions, and in two
dimensions one can find other allowed statistics without this constraint on the value of the phase shift.

153In Pathria’s notation, what I will eventually write as ηP is denoted δP = (±1)[P ]

154“Hamiltonia”?
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and of course

H|k1, . . . ,kN〉× =

(∑
α

~2k2
α

2m

)
|k1, . . . ,kN〉×. (D.36)

These product states are very convenient to work with, but they are too general! That is,
they are appropriate for distinguishable particles, but for indistinguishable particles they do
not have the correct symmetry for either bosons or fermions.

To show how we can compactly write either fermionic or bosonic states, let’s start by
defining a symbol

η =

{
1 for bosons
−1 for fermions

, (D.37)

and we will write things like |{k}〉+ and |{k}〉− for bosonic and fermionic states, respectively.

Fermionic eigenstates

We build the set of possible fermionic states by summing over all possible permutations of
the product state, but including the appropriate anti-symmetrizing factor:

|k1, . . . ,kN〉− =
1√
N−

∑
P

(−1)PP |k1, . . . ,kN〉×, (D.38)

where N− = N ! is a factor that ensures proper normalization of our fermionic eigenstate.
Because of the anti-symmetrization, if there are any value kα appears more than once the
whole eigenstate vanishes, and so anti-symmetrization is only possible if there are N distinct
kα. This is why we know there are as many distinct terms in the sum as there are particles,
and thus why N− = N !. For example, a three-particle anti-symmetrized state is155

|123〉− =
|123〉× + |231〉× + |312〉× − |213〉× − |321〉× − |132〉×√

6
(D.39)

Bosonic eigenstates

Formally, we write the bosonic states similarly, as sum of possible permutations of the product
state with a factor of (+1)P = 1 accounting for the parity of each permutation:

|k1, . . . ,kN〉+ =
1√
N+

∑
P

(+1)PP |k1, . . . ,kN〉×. (D.40)

Bosons, though, are allowed to have states in which the same kα appears multiple times, so
computing the normalization factor is slightly more complicated. To see this, consider the
bosonic state |121〉+ (i.e., a state in which there are two identical k and one unlike k. We
see that

|121〉+ =
1√
N+

(|112〉× + |121〉× + |211〉× + |112〉× + |121〉× + |211〉×)

=
2√
N+

(|112〉× + |121〉× + |211〉×) , (D.41)

155for convenience, let k1 = 1, etc.
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so for proper normalization of |121〉+ we need N+ = 12. The combinatorial generalization is
that if each k is repeated nk times in the N -particle bosonic state, then N+ = N !

∏
k nk!.

We can see this by requiring

1 = +〈{k}|{k}〉+ =
1

N+

∑
P,P ′

× 〈P ′{k}|P{k}〉×

=
N !

N+

∑
P

× 〈{k}|P{k}〉×, (D.42)

but the 〈{k}|P{k}〉 vanish by orthogonality unless the permuted set of wavevectors matches
the original, which happens nk! times for each repeated k. Thus,

1 =
N !
∏

k nk!

N+

⇒ N+ = N !
∏
k

nk!. (D.43)

Compact notation

Actually, though, since for a fermionic state nk can only be zero or one (again, the antisym-
metrization gets rid of any states with multiply repeated k), we can combine the bosonic
and fermionic notation above into:

|k1, . . . ,kN〉η =
1√
Nη

∑
P

ηPP |k1, . . . ,kN〉×. (D.44)

For both bosons and fermions Nη = N !
∏

k nk!, and note that the states end up being
uniquely specified by the set of occupation numbers, nk, with the constraint∑

k

nk = N. (D.45)

D.6 The canonical ensemble density matrix for non-

interacting identical particles

In the main text we argued that the h → 0 limit of quantum statistical mechanics would
imply the existence of h’s in the phase space measure even for strictly classical systems. Let’s
use the product-state technology to show more formally not just the presence of Planck’s
constant but also the factor of 1/N ! that should be there when dealing with indistinguishable
particles.

From our Bosonic and Fermionic eigenstates, we will begin by writing down the canonical
density matrix for non-interacting sets of identical particles; we will eventually extract the
canonical partition function by using the fact that ρ is normalized. Just as in classical
statistical mechanics, once we have Z we can extract all of thermodynamics. But just like
the classical p(µs) contains more information than just thermodynamics, ρ gives us additional
information (for instance, about multi-particle correlations). This section will be a bit of a
technical calculation; at the end we will understand where the classical partition function
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comes from, and also how the quantum statistics of non-interacting identical particles are
approximately equivalent to introducing either attractive or repulsive classical interactions
which are felt over distances comparable to the thermal de Broglie wavelength.

Let’s make our lives messy by writing the elements of the density matrix in the position
basis: 〈{r′}|ρN |{r}〉η, where we know ρN will be diagonal in the energy basis:

〈r′1, . . . , r′N |ρN |r1, . . . , rN〉η =
∑

{k}restricted

[
1

Nη

∑
P,P ′

ηPηP
′〈{r′}|P ′ {k}〉×ρ({k})〈P {k}|{r}〉×

]
.

(D.46)
The density matrix is (c.f. Eq. D.10)

ρN({k}) =
exp

(
−β
∑N

α=1
~2k2α
2m

)
ZN

, (D.47)

and the “restricted” sum above makes sure that every unique indistinguishable particle state
appears exactly once (correctly accounting for either bosonic or fermionic statistics). That
restriction is, in fact, a bit cumbersome, so it is more convenient to sum over all {k} and
then correct for any over-counting. Since the states are specified by the occupation numbers,
and since (again) for fermions the ηPηP

′
cancels all contributions from terms with nk > 1,

we can do this via ∑
{k}restricted

=
∑
{k}

∏
k nk!

N !
(D.48)

Making this change (combined with the factor of 1/Nη = 1/(N !
∏

k nk!)), gives

〈{r′}|ρN |{r}〉η =
∑
{k}

1

(N !)2

∑
P,P ′

ηPηP
′

ZN
e

(
−β
∑N
α=1

~2k2α
2m

)
〈{r′}|P ′ {k}〉〈P {k}|{r}〉. (D.49)

We reorder the sums and replace the sum over {k} with an integral to get

〈{r′}|ρN |{r}〉η =
1

(N !)2ZN

∑
P,P ′

ηPηP
′
∫ ( N∏

α=1

V d3kα
(2π)3

e

(
−β ~2k2α

2m

))
e−i

∑N
α (kPα·rα−kP ′α·r′α)

V N
.

(D.50)
Perhaps you feel that we have made things worse rather than better; fortunately, we are

undeterred. Let’s introduce a new label γ = Pα, α = P−1γ to keep track of permutations.
We’ll make use of the fact that for functions / operators / variables f and g we can sum over
indices

∑
α f(Pα)g(α) =

∑
γ f(γ)g(P−1γ); this allows us to focus on a particular wavevector:

〈{r′}|ρN |{r}〉η =
1

(N !)2ZN

∑
P,P ′

ηPηP
′
N∏
α=1

∫
d3kα
(2π)3

e
−ikα·

(
rP−1α−r

′
(P ′)−1α

)
−β ~2k2α

2m . (D.51)

The Gaussian integrals in this expression give∫
d3kα
(2π)3

e
−ikα·

(
rP−1α−r

′
(P ′)−1α

)
−β ~2k2α

2m =
1

λ3
exp

(
− π

λ2

(
rP−1α − r′(P ′)−1α

)2
)
. (D.52)



242 APPENDIX D. QUANTUM STATISTICAL MECHANICS

Using this result and setting µ = P−1α we get

〈{r′}|ρN |{r}〉η =
1

ZNλ3N(N !)2

∑
P,P ′

ηPηP
′
exp

(
− π

λ2

N∑
µ=1

(
rµ − r′(P ′)−1Pµ

)2
)
. (D.53)

The last step is to do one of the two sums over the permutations. We define Q = (P ′)−1P ,
and since ηP = ηP

−1
we can write ηPηP

′
= η(P ′)−1P = ηQ. With this, and summing over one

set of N ! permutations, we arrive at

〈{r′}|ρN |{r}〉η =
1

ZNλ3NN !

∑
Q

ηQ exp

(
− π

λ2

N∑
µ=1

(
rµ − r′Qµ

)2

)
. (D.54)

We can finally get the canonical partition function by enforcing the normalization of the
density matrix:

Tr (ρ) = 1 ⇒
∫ N∏

α=1

d3rα〈{r}|ρN |{r}〉η = 1 (D.55)

⇒ ZN =
1

λ3NN !

∫ N∏
α=1

d3rα
∑
Q

ηQ exp

(
− π

λ2

N∑
µ=1

(rµ − rQµ)2

)
. (D.56)

We see that the quantum mechanical partition function has within it a sum over the N !
permutations of identical particles, the classical result,

ZN =
1

N !

(
V

λ3

)N
,

corresponds to the term in which there are no exchanges, that is, where Q is the identity.
We see that there are lots of other terms involving products of terms like

exp
(
− π

λ2
(r1 − r2)2

)
,

but as T →∞, λ→ 0 and these quantum corrections vanish.

D.6.1 Statistical interparticle potential

Before we try to evaluate Eq. D.56, let’s pause to think about perturbations away from the
infinite temperature limit. Clearly the lowest order correction from the classical canonical
partition function involves permutations which just exchange two particles. So, let’s consider
the simplest possible (non-trivial) case, where N = 2 and

∑
Q is a sum over the identity and

either a symmetric or antisymmetric exchange of particles. The partition function is

Z2 =
1

2!

(
V

λ3

)2 [
1 +

η

23/2

λ3

V

]
, (D.57)
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Figure D.1: The effective statistical interparticle potential is attractive (bosons)
or repulsive (fermions) The solid line corresponds to vs in Eq. D.59 with η = +1, as in
the case of bosons, and the dashed line corresponds to the case of η = −1, as for particles
with fermionic statistics.

and the diagonal elements of the density matrix are

〈r1, r2|ρ2|r1, r2〉 ≈
1

V 2

[
1 + η exp

(
−2π

(r1 − r2)2

λ2

)]
. (D.58)

This tells us that when the interparticle separation is comparable to λ the probability
density for the two non-interacting identical particles is different from the classical result of
1/V 2, on account of the statistics of identical particle permutations. For η = 1 there is a
greater likelihood of finding the particles close together, and for η = −1 there is a reduction
in the probability (all the way down to zero for |r1 − r|2 → 0).

We can express these different statistical correlations by pretending that we have classical
particles interacting according to a statistical interparticle potential vs(r). We’ll see these
kinds of statistical potentials again later in the course; the idea is that the Boltzmann
weight associated with a particular separation should be exactly equal to change in the pair
correlation away from the infinite temperature limit above:

exp (−βvs(r)) = 1 + η exp

(
−2π

r2

λ2

)
. (D.59)

This effective potential is shown in Fig. D.1, again, it is a classical potential that mimics
the effect of quantum correlations at high temperatures.

D.7 The grand canonical ensemble for non-interacting

identical particles

In the Sec. (D.6) we work with these combinations of product states in the position basis to
show the relationship between quantum and classical partition functions, and we demonstrate
the traditional resolution to Gibbs’ paradox for identical particles156. However, explicitly

156i.e., we recover the factors of h and N ! we introduced in an ad-hoc way in Sec. 6.1.5
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calculating the kinds of sums over all possible permutations of particle indices that appear
in Eq. D.56 for either Bosonic or Fermionic states is... daunting, to say the least. We can
first make our life a little bit easier by working with the canonical partition function in the
basis for which the Hamiltonian is diagonal. Here

ZN = Tr
(
e−βHN

)
=

∑
{k}restricted

η 〈{k}|e−β
∑N
α=1 Ekα |{k}〉η. (D.60)

We’ve switched from the particular single-particle Hamiltonian with only kinetic energy in
the last section to arbitrary single-particle Hamiltonians that have some set of energy levels
characterized by energies Ekα (so, these could be free particles in a box, or quantum harmonic
oscillators, etc.). We still have this restriction on the {k}, which we work around as follows.

We recall that the allowed states can be specified by the occupation numbers, nk, for
each k:

ZN =
∑

{k}restricted

e−β
∑N
α=1 Ekα

=
∑

{nk}restricted

exp

(
−β
∑
k

Ekαnk

)
. (D.61)

Furthermore, we have gone from sums over symmetry-restricted sets of k to restricted sums
over the occupation numbers:∑

k

nk = N, and nk =

{
0 or 1 fermions
0, 1, 2, . . . bosons

(D.62)

Performing this restricted sum over occupations numbers is still difficult, so we move to
the grand canonical ensemble:

Qη =
∞∑
N=0

zNZN =
∞∑
N=0

eβµN
∑

{nk}restricted

exp

(
−β
∑
k

Ekαnk

)
(D.63)

=
∑
N=0

 ∑
{nk}restricted

∏
k

exp [−β (Ek − µ)nk]

 , (D.64)

where the subscript η reminds us that the restriction on the sum implicitly depends on the
quantum statistics in question. At last we see the utility of moving to the grand canonical
ensemble: the double summation above – first over a restricted set of occupation numbers at
fixed N (where the sum of the occupation numbers equals N), and then over all N – is equiv-
alent to simply summing over all values of the different occupation numbers independently
for each k.

We now have

Qη =
∑
{nk}η

∏
k

exp [−β (Ek − µ)nk] , (D.65)



D.7. GCE FOR IDEAL QUANTUM PARTICLES 245

where {nk}η reminds us that the sum over occupation numbers is either
∑1

nk=0 for fermions
or
∑∞

nk=0 for bosons. We can evaluate the sums over the occupation numbers independently
for each k above; explicitly, we can write

Qη =
∑

nk1
,nk2

,...

[(
ze−βEk0

)n0
(
ze−βEk1

)n1 · · ·
]

=

[∑
n0

(
ze−βEk1

)n0

][∑
n1

(
ze−βEk1

)n1

]
· · · (D.66)

for fermions this just gives us two terms per k, and for bosons we get a simple geometric
series as long as that series converges :

Q− =
∏
k

[1 + exp (βµ− βEk)] , (D.67)

Q+ =
∏
k

[1− exp (βµ− βEk)]−1 , with Ek − µ > 0 ∀k. (D.68)

Thermodynamically we usually want to take derivatives of the log of the above expressions,
so we combine them compactly as

logQη = −η
∑
k

ln [1− η exp (βµ− βEk)] . (D.69)

From this we can calculate the usual suspects. For instance, we typically want to know how
many particles we actually have for a given value of the chemical potential. Recall that
classically we know that the unconditional probability of finding N particles in the system
is

p(N) =
eβµNZN
Q

,

and here we have products of independent single-particle states. So, we very similarly can
write down the probability of having a particular set of occupation numbers:

pη ({nk}) =
1

Qη

∏
k

exp [−β (Ek − µ)nk] . (D.70)

From this we can pull down the average occupation number of a particular state with energy
Ek, as

〈nk〉η = − ∂ lnQη
∂ (βEk)

=
1

exp (βEk − βµ)− η
. (D.71)

From this the average number of particles at fixed µ is

Nη =
∑
k

〈nk〉η =
∑
k

1

z−1eβEk − η
(D.72)

and the average energy is

Eη =
∑
k

Ek 〈nk〉η =
∑
k

Ek

z−1eβEk − η
(D.73)
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D.8 Ideal quantum gases

D.8.1 Initial comments

In the rest of the chapter we will specialize the above results to the case of ideal quantum
gases, looking at some of the thermodynamic properties of both ideal Fermi and Bose gases.
Before we dive into the details, it is worth saying a few words about what we will get out
of this exploration. Classically, the ideal gas is a prime example we keep coming back to,
largely because it is extremely analytically tractable. It does provide a starting point for
understanding real gases, but it’s a pretty poor starting point for just about any other
system (solids, dense liquids, etc).

Quantum ideal gases turn out to be much richer in their phenomenology and much
more closely connected to the physics of real systems. Non-interacting systems of bosons are
surprisingly accurate descriptors of photons157, phonons 158, and also (of course) actual dilute
gases of bosons. Additionally, ideal Bose gases are the first system in this class which exhibit
a phase transition159 – certainly I find it interesting that a collection of “non-interacting”
particles can exhibit different collective forms of organization.

As it happens, thinking about ideal collections of fermions is also a good starting point
for understanding a wide range of physical systems! This is perhaps surprising – electrons are
charged, and the interactions between electrons in an atom, or in a whole material, always
make a large contribution to the energy. Nevertheless, a gas of non-interacting fermions is
a powerful description of atoms, metals, insulators, neutron stars, etc. Not a free gas of
fermions: the trick is that interacting fermions often act like collections of non-interacting
fermions sitting in a modified external potential160.

To begin thinking about these ideal quantum gases, let’s first just specialize the expres-
sions we derived at the end of Sec. D.7 to the case of non-relativistic idealized quantum gases.
That is, we’ll make the specific choice for the energies Ek = ~2k2/(2m), where the energy
levels have a degeneracy g (associated with the spin s of the particles, e.g., g = 2s+ 1), and
where we assume the particles are in a large enough box that we can safely replace the sum
over k by an integral:

∑
k → V

∫
d3k/(2π)3. The evaluation of the grand canonical partition

function gives us the following results for the pressure, number density, and energy density:

βPη =
lnQη
V

= −ηg
∫

d3k

(2π)3
ln
[
1− ηze−β

~2k2
2m

]
, (D.74)

nη =
Nη

V
= g

∫
d3k

(2π)3

(
z−1eβ

~2k2
2m − η

)−1

, (D.75)

εη =
Eη
V

= g

∫
d3k

(2π)3

~2k2

2m

(
z−1eβ

~2k2
2m − η

)−1

. (D.76)

157Which might have been anticipated from the discussion of blackbody radiation
158And, hence, gives insight into the heat capacity of most crystalline solids
159To the Bose-Einstein condensate
160See Ref. [10] for a slightly expanded discussion of this point.
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D.8.2 Mathematical simplifications

One of my goals is to show how we can continue to talk about both bosons and fermions in
the same language, and to do so we’ll introduce some mathematical functions (which you
may or may not have already encountered).

First, we define the polylogarithm of order m by the series

Lim(z) =
∞∑
α=1

zα

αm
; (D.77)

this expression is fine for any complex value of z with |z| ≤ 1, and for other z the polylog-
arithm is defined by analytic continuation. Note that Lim(1) is the Riemann zeta function,
and that Li1(z) = − ln(1− z). The name of the function stems from how different polylogs
can be recursively related to each other, e.g.,

Lim+1(z) =

∫ z

0

Lim(t)

t
dt,

or
d

dz
Lim(t) =

1

z
Lim−1(z). (D.78)

Next, we define the following families of functions that are closely related to what are
typically called Bose-Einstein161 and Fermi-Dirac integrals:

f ηm(z) ≡ 1

(m− 1)!

∫ ∞
0

dx
xm−1

z−1ex − η
, (D.79)

where we will often want m to take non-integer values, so when we write “(m−1)!” we really
mean the gamma function162. We definied the Lim(z) because the polylog is closely related
to these physical integrals. Thinking of z as a small parameter:

f ηm(z) =
1

(m− 1)!

∫ ∞
0

dx
xm−1

z−1ex − η

=
1

(m− 1)!

∫ ∞
0

dx xm−1

∞∑
α=1

ηα+1zαe−αx

=
∞∑
α=1

(
ηα+1zα

1

(m− 1)!

∫ ∞
0

dx xm−1e−αx
)

=
∞∑
α=1

ηα+1 z
α

αm

= ηLim(ηz) (D.80)

Back to physics! Let’s look at our thermodynamic expressions for ideal gases of fermions
or bosons, and make the obvious change of variables to x = β~2k2/(2m), i.e., k = 2

√
π

λ
x1/2.

161Note that f+m(1) = ζ(m), the Reimann zeta function
162Γ(m) = (m− 1)!, with, e.g., (1/2)! =

√
π/2, etc.
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Let’s explicitly evaluate our expression for, say, pressure163:

βPη = = −ηg
∫

d3k

(2π)3
ln
[
1− ηze−β

~2k2
2m

]
= − 2ηg

λ3
√
π

∫ ∞
0

dx x1/2 ln
(
1− ηze−x

)
=

4g

3λ3
√
π

∫ ∞
0

dx
x3/2

z−1ex − η
=

g

λ3
f η5/2(z). (D.81)

Similarly, we can now compactly write the three thermodynamic expressions above as

βPη =
g

λ3
f η5/2(z)

nη =
g

λ3
f η3/2(z) (D.82)

εη =
3

2
Pη.

Beautiful. These equations are a complete description of the thermodynamics of ideal
Fermi and Bose gases, neatly encoded in the properties of unusual integral expressions in-
volving the fugacity164.

Of course, these equations are also somewhat different than what we might actually want.
Usually we want equations of state – equations that compactly relate all of the thermody-
namic coordinates we use to characterize our system. Here we have an implicit relationships:
we get an equation for P as a function of z, and also n = N/V as a function of z. We would
like, therefore, to invert the middle equation and know z in terms of the density; to do so
let’s work to better understand the behavior of the f ηm(z).

D.8.3 High-temperature and low-density limit of ideal quantum
gases

The simplest limit to consider – in which we can continue to treat Fermions and Bosons
simultaneously – is the high-T and small-n limit of our gases, for which z is small. For small
z we make use of the series expansion to write

f ηm(z) = ηLim(ηz) =
∞∑
α=1

ηα+1 z
α

αm
= z + η

z2

2m
+
z3

3m
+ · · · , (D.83)

163Using an integration by parts to get to line 3
164Or, you might say that in picking a name for a complicated integral we’ve just parameterized our

ignorance, without gaining any understanding yet
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which makes it clear that for z � 1 we also have f ηm(z)� 1. Hence, nη and Pη are all small,
too, and we are reassured that our calculation here is going to be nicely self-consistent.

So, we take our equation for n in terms of z (Eq. D.82) and find instead a relationship
for z in terms of n:

z = d− η z2

23/2
− z3

33/2
− · · · , (D.84)

where we have defined the degeneracy factor, d = nηλ
3/g, which is another way of character-

izing the regime in which quantum effects become important (i.e., when nηλ
3 > g, quantum

mechanical effects become crucial to keep track of). From here, we can compute z as a power
series to any order in n (plus corrections of higher order) by recursively substituting lower
order solutions. Let me show you what I mean:

Explicitly, to lowest order z ≈ z1 = d, where I’m using subscripts to temporarily note
the order of the solution we have found. That was straightforward.

To improve this to next order, we substitute z1 into the right hand side of the power
series above, and keep all terms of order d2, getting

z ≈ z2 = d− η

23/2
d2.

To get the next order term, we substitute this improved approximation into the right
hand side of the power series (keeping all terms up to third order), giving

z ≈ z3 = d− η

23/2
(z2)2 − 1

33/2
(z2)3

= d− η

23/2

(
d− η

23/2
d2
)2

− 1

33/2

(
d− η

23/2
d2
)3

= d− η

23/2
d2 +

(
1

4
− 1

33/2

)
d3 − · · · ,

and so on. The point is not to work out the numerical values of these prefactors in this
power series165, but rather that we can systematically and self-consistently rearrange nη(z)
into z(nη), at least in the limit we’re considering. Having done that, we can then substitute
this power series back into Eq. D.82 and get a systematic expansion describing the high-
temperature, low-density ideal quantum gas:

Pη = nηkBT

(
1− η

25/2

(
nηλ

3

g

)
+

[
1

8
− 2

35/2

](
nηλ

3

g

)2

+ · · ·

)
(D.85)

We’ll see in the next chapter that this is our first look at a virial expansion of the equation
of state.

D.9 Ideal Bose gases

At higher temperature we were able to work out a power series representation for the equation
of state for a Bose gas; as the temperature is reduced and d = n+λ

3/g grows that approach is

165Unless you actually want to calculate certain precise quantities, of course.
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no longer useful and we must work directly with the f ηm(z) functions. Recall that the average
occupation number of a particular energy eigenstate, Eq. D.71, is

〈nk〉+ =
1

exp [β (Ek − µ)]− 1
,

which clearly cannot be a negative number. This means that µ < Ek for any choice of k;
given our investigation of Ek = ~2k2/(2m) here that means that µ < 0 and hence 0 ≤ z ≤ 1.

Thus, since the f+
m(z) are monotonically increasing functions for 0 ≤ z ≤ 1, we see that

the density of excited states for the ideal Bose gas is bounded. From Eq. D.82:

n+ =
g

λ3
f+

3/2(z) ≤ g

λ3
f+

3/2(1), (D.86)

where

f+
3/2(1) = 1 +

1

23/2
+

1

33/2
+ · · · ≈ 2.612.

Since there is a bound on the number of excited states, what happens if we take a fixed
number of particles in a fixed volume and start cooling them down? At high temperatures,
the bound above is not relevant and the density of excited states is the same as the number
density. Writing out the factors of λ above, though, we can see that there is a critical
temperature at which the bound becomes relevant:

n+λ
3

g
=
n+

g

(
h√

2πmkBTc

)3

= f+
3/2(1)

⇒ Tc(n) =
h2

2πmkB

(
n

gf+
3/2(1)

)2/3

. (D.87)

Below this temperature the fugacity is stuck at z = 1; the limiting density of excited states,
n∗ = gf+

3/2(1)/λ3, is less than the total number density, and the rest of the particles are forced
to occupy the k = 0 zero-energy ground state. This is Bose-Einstein condensation: having
a macroscopically large number of particles accumulating in just one single-particle state.
The schematic growth of the number of particles in the ground state at low temperature is
shown in Fig. D.2.

D.9.1 Pressure

We now turn to the pressure of the low-temperature phase of this system. For T < Tc we
have z = 1, and our thermodynamic expression given earlier gives us

βP+ =
g

λ3
f+

5/2(1) ≈ 1.341
g

λ3
, (D.88)

a pressure which is independent of n and proportional to T 5/2. We can use our expression
for the critical temperature to note, by the way, that at Tc we have

P (Tc)V =
f+

5/2(1)

f+
3/2(1)

(NkBTc) ≈ 0.5134NKBTc, (D.89)

and we see that right at the transition the pressure of an ideal Bose gas is about half of what
would be expected from a classical gas.
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Figure D.2: Fraction of the normal phase and the condensed phase in an ideal
Bose gas. Since the density of excited states n∗ = gf+

3/2(1)/λ3 ∝ T 3/2, we can schematically
draw the figure as shown.

D.9.2 Specific heat

Let’s look a little closer at the transition from high- to low-temperature Bose gases by
studying the heat capacity. Looking again at Eq. D.82 to get an expression for the energy,
we see the heat capacity (at constant volume and particle number) is

CV,N =
∂E

∂T

∣∣∣∣
V,N

=
15V gkB

4λ3
f+

5/2(z) +
3V gkBT

2λ3

df+
5/2(z)

dz

dz

dT
. (D.90)

Note that the first term contributes for the entire range of T , but the second term does not:
z only appreciably varies above the critical temperature, so the second term only contributes
for T > Tc. What are the limits here?

Low temperatures Below Tc we set z = 1, ignore the second term, and have

CV,N =
15V gkB

4λ3
f+

5/2(1) = NkB
15

4

f+
5/2(1)

f+
3/2(1)

(
T

Tc

)3/2

.

So, below Tc the specific heat per particle simply scales as T 3/2 and it approaches Tc with a
slope

d

dT

[
CV,N
NkB

]
T=T−c

=
45

8Tc

f+
5/2(1)

f+
3/2(1)

≈ 2.889

Tc
.

High temperatures Above Tc we need to account for the second term in the heat capacity.
The derivative with respect to z is easy enough: recalling Eq. D.78, we have

d

dz
f+
m(z) =

1

z
f+
m−1(z),

so our heat capacity is

CV,N =
3V gkBT

2λ3

(
5

2T
f+

5/2(z) +
f+

3/2(z)

z

dz

dT

)
. (D.91)
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All that remains is to find how the fugacity changes with temperature. We do this by invoking
our condition of fixed particle number in Eq. D.82:

dN

dT

∣∣∣∣
V

= 0 ⇒ 0 =
gV

λ3

(
3

2T
f+

3/2(z) +
f+

1/2(z)

z

dz

dT

)

⇒ dz

dT
= − 3z

2T

f+
3/2(z)

f+
1/2(z)

. (D.92)

Substituting this in, we get

CV,N =
3V gkB

2λ3

5f+
5/2(z)

2
− 3

2

(
f+

3/2(z)
)2

f+
1/2(z)

 . (D.93)

How does this behave as T (and, hence, z) varies? At very high temperatures we can use
our technique of recursively expanding and solving for z to see that

CV /(NkB) =
3

2

(
1 +

nλ3

27/2
+ · · ·

)
.

That is: as the temperature approaches infinity, the specific heat approaches the classical
limit from above. What about at temperatures close to the transition? We first note that as
z → 1 the function f+

3/2(z) approaches some number, but the function f+
1/2(z) diverges. Thus,

as T → T+
c the second term in the heat capacity actually vanishes, and we find[

CV,N
NkB

]
T→T+

c

=
15

4

f+
5/2(1)

f+
3/2(1)

≈ 1.926.

That is: the specific heat is continuous across the transition. Above Tc how does the specific
heat approach this value? To answer that we just need to evaluate

d

dT

[
CV,N
NkB

]
=

3gV

2N

d

dT

 5

2λ3
f+

5/2(z)− 3

2λ3

(
f+

3/2(z)
)2

f+
1/2(z)

 .
This is a bit fussy, but we have the technology: we already know how to relate derivatives
of the f+

m functions to lower-order ones, and we have already evaluated dz/dT . Churning
through these manipulations gives[

CV,N
NkB

]
T→T+

c

=
1

Tc

45

8

f+
5/2(1)

f+
3/2(1)

− 27

8

(
f+

3/2(1)
)2

f+
−1/2(1)(

f+
1/2(1)

)3

 ≈ −0.777

Tc
.

Note that even though the specific heat itself is continuous across the transition, it’s
derivative discontinuously jumps (from positive to negative!) as the temperature is scanned
from below to above Tc. The behavior – from low temperature, to a cusp at Tc, to the classical
limit as T → ∞ – is schematically shown in Fig. D.3. Importantly, we also just explicitly
calculated our first exact partition function that eventually led us to a discontinuity in some
derivative of a free energy (here in the context of the derivative of a response function) – our
first calculated phase transition!
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D.9.3 Ground state occupation

We just found explicitly calculated a quantity that suggests a discontinuity in a higher
derivative of a response function – the specific heat itself was continuous across the transi-
tion, but its derivative wasn’t. This does not automatically tell you the order of the phase
transition, it just sets a bound on a number of derivatives in which you will first see some-
thing non-analytic. Actually, we could have seen a non-analyticity much soon by looking at
number of particles in the excited state above and below Tc. From Eq. D.87 we get that
Nexcited/N = (T/Tc)

3/2, and so we expect the relative occupation in the ground state to be

Nground

N
=
Nexcited

N
= 1−

(
T

Tc

)3/2

, T < Tc (D.94)

and
Nground

N
→ 0 in the thermodynamic limit for T > Tc.

First vs third-order transition; landau, SSB, order parameter (like superfluidity, complex
number associated with macroscopically occupied GS), etc

In the following chapter we’ll more systematically look at interacting systems and phase
transitions (in the simpler context of classical systems). First, we wrap up the chapter with
a quick look at degenerate Fermi gases.

D.10 Ideal Fermi gases

Just as in the case of the ideal Bose gas, when d = n−λ
3/g approaches unity we can no

longer usefully rely on the power series expansions of the f ηm(z) in Eq. D.82, and we must
start working with the full set of equations there. In the limit that T → 0 we can look at
the average fermi occupation number for states associated with k:

〈nk〉− =
1

eβ(Ek−µ) + 1
=

{
1 Ek < µ
0 otherwise

. (D.95)

At T = 0 this is just a step function, so at zero temperature all of the single-particle states
up to Ek = εF , the fermi energy, are completely filled, forming the so-called fermi sea. The
corresponding wavenumber is166 referred to as the fermi wavenumber, kF . For an ideal gas

166shockingly

Figure D.3: Heat capacity of an ideal Bose Gas (note the cusp at Tc.)
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Figure D.4: Fermi occupation numbers The dotted line shows the zero-temperature
limit, and the solid curve shows the finite temperature result.

with Ek = ~2k2/(2m), these are related by

N =
∑
|k|≤kF

g = gV

∫
k≤kf

d3k

(2π)3
=
gV

6π2
k3
F , (D.96)

so

kF =

(
6π2n

g

)1/3

, εF =
~2

2m

(
6π2n

g

)2/3

(D.97)

Schematically the behavior of the occupation numbers are shown in Fig. D.4.

We need to do some work to investigate the finite-temperature behavior (i.e., for large z).
Here we follow Sommerfeld’s approach, and first take Eq. D.79 and perform an integration
by parts:

f−m(z) =
1

m!

∫ ∞
0

dx xm
d

dx

(
−1

ex−ln z + 1

)
, (D.98)

where we’ve just written z−1 as e− ln z for convenience. We then say that we know the fermi
occupation itself changes very rapidly from 1 to zero across εF , so the derivative above
must be sharply peaked. We expand about this peak of the derivative (which occurs when
x = ln z), by setting x = ln z+ t and taking the new integration variable −∞ ≤ t ≤ ∞. This
trick gives us:

f−m(z) ≈ 1

m!

∫ ∞
−∞

dt (ln z + t)m
d

dt

(
−1

et + 1

)
=

1

m!

∫ ∞
−∞

dt
∞∑
α=0

[(
m

α

)
tα (ln z)m−α

]
d

dt

(
−1

et + 1

)
=

(ln z)m

m!

∞∑
α=0

m!

α!(m− α)!
(ln z)−α

∫ ∞
−∞

dt tα
d

dt

(
−1

et + 1

)
. (D.99)

The last type of integral appearing above can be manipulated (exploiting the anti-symmetry



D.10. IDEAL FERMI GASES 255

of the integrand under exchange of sign of t, etc.) to give:

1

α!

∫ ∞
−∞

dt tα
d

dt

(
−1

et + 1

)
=

{
0 if α is odd

2
(α−1)!

∫∞
0
dt t

α−1

et+1
if α is even

, (D.100)

and in that last expression we recognize an expression which is just 2f−α (1). So, we combine
the above two equations, and exploit the fact that other people have computed the integrals
associated with f−m(1), to give the Sommerfeld expansion:

lim
z→∞

f−m(z) =
(ln z)m

m!

∞∑
αeven

2f−α (1)
m!

(m− α)!
(ln z)−α

=
(ln z)m

m!

(
1 +

π2

6

m(m− 1)

(ln z)2
+ · · ·

)
. (D.101)

To first approximation, explicitly, we have

f−5/2(z) ≈ 8 (ln z)5/2

15
√
π

(
1 +

5π2

8 (ln z)2 + · · ·
)

f−3/2(z) ≈ 4 (ln z)3/2

3
√
π

(
1 +

π2

8 (ln z)2 + · · ·
)

(D.102)

f−1/2(z) ≈ 2 (ln z)1/2

√
π

(
1− π2

24 (ln z)2 + · · ·
)

We can now plug these results into Eq. D.82. When z � 1 the degeneracy factor is

n−λ
3

g
= f−3/2(z) ≈ 4 (ln z)3/2

3
√
π

(
1 +

π2

8 (ln z)2 + · · ·
)
. (D.103)

The leading term reproduces our earlier result for the fermi energy:

βεF =
β~2

2m

(
6π2n

g

)2/3

=

(
3nλ3

4
√
π

)2/3

= ln z (D.104)

which gives a chemical potential of

µ = kBT ln z ≈ εF

(
1− π2

12

(
kBT

εF

)2
)
. (D.105)

Note that this is positive at low temperatures and negative at high temperatures, suggesting
that the chemical potential changes sign at a fermi temperature TF ∼ εF/kB. The energy
density E/V = 3P/2, and the low-temperature pressure is

βP− =
g

λ3

8 (ln z)5/2

15
√
π

(
1 +

5π2

8 (ln z)2 + · · ·
)

(D.106)
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With the help of our previous expression (relating the fermi energy to ln z, for instance), we
can write this as a power series in temperature, as

P− =
2

5
εFn−

(
1 +

5π2

12

(
kBT

εF

)2

+ · · ·

)
. (D.107)

Unlike a classical gas, the degenerate fermi gas has finite pressure (and internal energy) even
at zero temperature. Additionally, the heat capacity,

CV
NkB

=
1

NkB

∂E

∂T
=
π2

2

kBT

εF
(D.108)

varies as the first power of temperature at low T (something which is quite general in fermi
gases, regardless of the dimension). This reflects the fact that only a small fraction (of order
T/TF ) of the particles are excited at temperature T , and most of the particles do not feel the
effects of the finite temperatures. Each of those excited particles gains about kBT of energy,
hence CV ∼ (T/TF ). Additionally, we see that the heat capacity at low temperature is much
smaller than the classical expectation of 3NkN/2.

D.11 Problems

D.11.1 Practice with density matrix formalism

We ended section D.3 of the notes with a few examples in which we calculated the density
matrix for simple examples. In this problem we’ll do another:

Consider the hamiltonian for a simple two-dimensional quantum mechanical rotor,

H = −~2

2I

d2

dθ
,

where 0 ≤ θ ≤ 2π, and eigenstates must satisfy ψ(θ) = ψ(θ + 2π).

(A): What are the eigenstates of this Hamiltonian? What are the energy levels?

(B): What are the elements of the density matrix, 〈θ′|ρ|θ〉, in the canonical
ensemble? Give simplified expressions for these elements in the high- and low-
temperature limits.

D.11.2 Density matrices, Entropy, and unbiased estimation

In this question I basically want to know if the method of unbiased estimation makes sense
in quantum mechanical settings. Suppose a quantum mechanical system has a hamiltonian
H, is at temperature T , and is described by a (potentially time-evolving) density matrix
ρ(t). Define the entropy associated with the density matrix as

S(t) = −Tr [ρ ln ρ] .
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(A) We already have expressions for the time evolution of density matrices; what
is dS

dt
?

(B) By using Lagrange multipliers (and perhaps thinking back to what we did in
the chapter on probability), find the density matrix that maximizes the entropy,
subject to the constraint that you know the average energy 〈H〉 = Tr(ρH) = E.

(C) Is your solution for this maximum-entropy density matrix stationary (i.e., is
∂ρ
∂t

= 0)?

D.11.3 Canonical ensemble density matrix for non-interacting,
distinguishable particles

In Section D.5 we said that the product states are appropriate for distinguishable particles,
and in Section D.6 we looked at the canonical ensemble density matrix for non-interacting
particles where the eigenstates were either the fermionic or bosonic (anti)-symmetrizations
of the product states. Study the density matrix and canonical partition function using the
product states. Show that if you do so, you do not get Gibbs’ correction factor of
1
N !

.
Additionally, show that there are no spatial correlations between the particles

in the system, and so there is no statistical interparticle potential.

D.11.4 Discontinuity of the specific heat in Bose-Einstein conden-
sation

Earlier I asserted that above Tc the slope of the specific heat of a BEC approaching the
transition was

[
CV,N
NkB

]
T→T+

c

=
1

Tc

45

8

f+
5/2(1)

f+
3/2(1)

− 27

8

(
f+

3/2(1)
)2

f+
−1/2(1)(

f+
1/2(1)

)3

 ≈ −0.777

Tc
.

Derive this expression. Note that both f+
−1/2(z) and f+

1/2(z) individually diverge as z → ∞,
so take some care in evaluating the ratio of the powers of them that appear above.

D.11.5 Bose condensation in other dimensions

Consider an ideal gas of non-interacting, spinless bosons in a box whose generalized volume
is V ≡ Ld in d dimensions. We’ll be working in the grand canonical ensemble.

(A): Given the value of the chemical potential µ, Calculate both the grand
potential G = −kBT logQ, the number density n = N/V . Write your answer
in terms of d and the f+

m(z) functions. Hints: integration by parts will help with
the expression for logQ. The lecture notes have expressions for surface areas and
volumes of d-dimensional unit spheres



258 APPENDIX D. QUANTUM STATISTICAL MECHANICS

(B): Calculate the ratio PV/E, and compare with the classical result for an ideal
gas.

(C): Calculate the critical temperature, Tc(n), for Bose-Einstein condensation in
d dimentions.

(D): Calculate the heat capacity at low temperatures, C(T ) for T < Tc(n).

(E): Calculate the heat capacity at high temperature. What is the ratio Cmax/C(T →
∞)?

(F): How does the ratio you calculated in the last part behave as d→ 2? What
does this say about the dimensions for which your calculation was valid?

D.11.6 Specific heat for two-dimensional ideal quantum gases

In this problem we’ll be considering the specific heat of ideal Fermi and Bose gases in two
dimensions. Working directly with the expressions from Sec. D.7 of the notes will (probably)
help, after being appropriately generalized for two rather than three dimensions.

Part A:

For a given N , T , and V , show that the fugacities of the Bose and Fermi systems, zB and
zF , can be mutually related to each other:

(1− zB)(1 + zF ) = 1 ⇒ zB =
zF

1 + zF
. (D.109)

Part B:

Use properties of the f ηm(z) to derive the following relationship:

f−1
2 (zF ) = f+1

2

(
zF

1 + zF

)
+

1

2
ln2 (1 + zF ) . (D.110)

Part C:

Combining your results, show that the energy of the Fermi system is equal to the energy of
the Bose system plus a constant (and tell me what that constant is), i.e.

EF (N, T ) = EB(N, t) + constant. (D.111)

You have just shown, among other things, that the specific heat of an ideal Fermi gas is
identical to the specific heat of an ideal Bose gas for all T and N . Apparently the properties
of two-dimensional ideal quantum gases are qualitatively different from the properties of
three-dimensional ones!
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D.11.7 Heat capacities of an ideal Fermi gas

(A): Show that for an ideal Fermi gas one has

1

z

∂z

∂T

∣∣∣∣
P

= − 5

2T

f−5/2(z)

f−3/2(z)

.

(B): From the lecture notes we know the grand partition function for this system.
Take the appropriate thermodynamic derivatives to derive the entropy of an ideal
Fermi gas.

(C): Find an expression for γ ≡ CP/CV , the ratio of the heat capacities at
constant pressure and at constant volume. Your answer should be given in terms
of combinations of f−m(z).

Check that the low temperature limit of your expression is

γ ≈ 1 +
π2

3

(
kBT

εF

)2



260 APPENDIX D. QUANTUM STATISTICAL MECHANICS



Bibliography

[1] John Hopfield. Reflections on the aps and the evolution of physics. Bulletin of the
American Physical Society, 52, 2007.

[2] Raj Kumar Pathria. Statistical mechanics. Elsevier, 2016.

[3] Mehran Kardar. Statistical physics of particles. Cambridge University Press, 2007.

[4] Mehran Kardar. Statistical physics of fields. Cambridge University Press, 2007.

[5] Nigel Goldenfeld. Lectures on phase transitions and the renormalization group. CRC
Press, 2018.

[6] John Preskill. Lecture notes for physics 229: Quantum information and computation.
California Institute of Technology, 16(1):1–8, 1998.

[7] David Tong. Kinetic theory. Graduate Course, University of Cambridge, Cambridge,
UK, 2012.

[8] David Tong. Statistical physics. University of Cambridge, 2011.

[9] Kerson Huang. Introduction to statistical physics. CRC press, 2009.

[10] James P Sethna. Statistical mechanics: entropy, order parameters, and complexity,
volume 14. Oxford University Press, USA, 2021.

[11] Leo P Kadanoff. Statistical physics: statics, dynamics and renormalization. World
Scientific, 2000.

[12] William Thomson. Xxxvi.—an account of carnot’s theory of the motive power of heat;*
with numerical results deduced from regnault’s experiments on steam. Earth and En-
vironmental Science Transactions of The Royal Society of Edinburgh, 16(5):541–574,
1849.

[13] John Goold, Marcus Huber, Arnau Riera, Ĺıdia Del Rio, and Paul Skrzypczyk. The
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