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Abstract and sources

This is a set of lecture notes prepared for PHYS 526: Statistical Physics (Emory, Spring
2020). It is somewhat more verbose than what I will actually write on the board, but far
from a comprehensive textbook.

There are undoubtedly typos and errors in this document: please email any corrections
corrections to:

daniel.m.sussman@emory.edu

There are large variations in how I wrote these notes as the semester progressed – this
was my first time teaching, and what I needed out of a set of lecture notes on day 1 was...
quite different from what I needed for recording zoom lectures by the end of the suddenly
online semester.

Sources used

These notes are not original. They represent a merging of many of the sources that I learned
stat mech from, as well as resources I’ve been reading over the course of the semester. As I
said on the syllabus for the class, “Graduate-level statistical physics is a subject with many
available textbooks and wide disagreements about which one(s) to use.” For these notes I
have particularly drawn from:

1. Pathria & Beale (Statistical Mechanics, 3rd edition; Primary source),

2. Kardar (lectures & Statistical Physics of particles ; Primary source),

3. Goldenfeld (Lectures on Phase Transitions and the Renormalization Group; general
secondary source, especially for chapter on phase transitions),

4. Preskill (Chapter 10 of his Quantum Information notes for discussion on information
entropy and mutual information.)

5. David Tong (Chapter 2 of his lecture notes on Kinetic Theory, Chapter 1 of his notes
on Statistical Physics for parts of Chapter 3 of this document)

6. Huang (Chapter 5 for some parts of hydrodynamics. Also, the structure of this book
– which is, not surprisingly, echoed in Kardar – has inspired the progression of topics
covered here)

7. Sethna (Entropy, Order Parameters, and Complexity; general source)

8. Kadanoff (book; general source)
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Basic notation in the text

Triple lines, like so:

refer to estimated lecture breaks. These lost meaning once courses moved online (when I
started recording individual sections or subsections as lectures – no need to stick to record
in 75-minute blocks!).

Text that appears in blue in these documents are things that I probably won’t write on
the board, but will likely be discussed, or provide (hopefully) useful additional context, etc.
My use of this command varies strongly by chapter at the moment, and is most present early
on in the notes.
Text that appears in red in these documents are things that I intend to not go over in lec-
tures, and which are perhaps not related to the core ideas of the course but are necessary
to complete particular derivations. A first example are some elements of classical scattering
theory that appears in Chapter 3: Calculating the differential cross sections that appear
there are not particularly in the scope of the class, but the definitions help us get to the
Boltzmann equation.
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Chapter 0

Thermodynamics1: review and
background

0.1 Thermodynamics: a phenomenological description

of equilibrium properties of macroscopic systems

“Suppose you’ve got theoretical physics cracked. Suppose you know all the fun-
damental laws of Nature, the properties of the elementary particles and the forces
at play between them. How can you turn this knowledge into an understanding
of the world around us? More concretely, if I give you a box containing 1023 par-
ticles and tell you their mass, their charge, their interactions, and so on, what
can you tell me about the stuff in the box?
There’s one strategy that definitely won’t work: writing down the Schrödinger
equation for 1023 particles and solving it. That’s typically not possible for 23
particles, let alone 1023. What’s more, even if you could find the wavefunction of
the system, what would you do with it? The positions of individual particles are
of little interest to anyone. We want answers to much more basic, almost childish,
questions about the contents of the box. Is it wet? Is it hot? What colour is it?
Is the box in danger of exploding? What happens if we squeeze it, pull it, heat
it up? How can we begin to answer these kind of questions starting from the
fundamental laws of physics?
The purpose of this course is to introduce the dictionary that allows you trans-
late from the microscopic world where the laws of Nature are written to the
everyday macroscopic world that we’re familiar with. This will allow us to be-
gin to address very basic questions about how matter behaves.” – David Tong,
Lecture notes on Statistical Physics

We begin with a few phenomenological definitions:

1“Thermodynamics is a funny subject. The first time you go through it, you don’t understand it at all.
The second time you go through it, you think you understand it, except for one or two small points. The
third time you go through it, you know you don’t understand it, but by that time you are used to it, so it
doesn’t bother you any more.” – Arnold Sommerfeld, As quoted in: J.Muller, Physical Chemistry in Depth
(Springer Science and Business Media, 1992)
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As phenomenology, it is based on empirical observations, summarized by the laws of ther-
modynamics; a consistent mathematical framework is then built on top of these observations.

Closed system

We will think about isolating a system thermally by “adiabatic walls” that do not allow
heat exchange with the outside world. This is like a “point particle” approximation We will
sometimes consider “diathermic walls” which do allow such exchange of heat.

Equilibrium

A state in which “properties” don’t change over the period of observation – this dependence
on observation time makes the definition a subjective one. You observer that you do some-
thing, the system goes through some transient behavior, and then settles down into a state
which seems not to change.

Macroscopic properties

The systems under study will be characterized by thermodynamic coordinates or state func-
tions, such as mechanical properties: (V, P )gas, or (L, F )wire, or (M,B)magnet, etc..., plus some
thermal properties.

Phenomenology: How do these thermodynamic coordinates depend on each other, or co-
evolve? Rely on empirical observations and from them construct laws of thermodynamics.

0.2 0th Law

The zeroth law is a statement of the transitivity of (thermal) equilibrium:

Observation

If two systems, A and B, are separately in equilibrium with system C, then they are in
equilibrium with each other

Note that this implies the existence of “Temperature,” some additional thermodynamic
coordinate, we can use to describe a system.

Implications

We describe the state of each system, A, B, and C, by a set of thermodynamic coordi-
nates, e.g. {A1, A2, . . .}. The statement “A and C are in equilibrium” can be expressed by a
constraint between these coordinates that is, a change in A1 must be accompanied by some
changes in {A2, . . . , C1, C2, . . .} to maintain the equilibrium between the states. There should
be an additional coordinate (i.e., on top of the mechanical thermodynamic coordinates) to
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describe the system... we’ll call that coordinate “temperature”. Let’s write that constrain
via a function; what follows is physicists’ math... hand-waving ensues.

fAC (A1, . . . , C1 . . .) = 0. (1)

Likewise
fBC (B1, . . . , C1 . . .) = 0. (2)

Each of the above can be, in general, written as a constraint on one of the coordinates of C:

FAC (A1, . . . , C2 . . .) = C1 = FBC (B1, . . . , C2 . . .) . (3)

Is it obvious we can even do this, mathematically (i.e., go from Eq. 1 to 3)? No. But physically,
yes.

The above is a statement about the first (“if”) clause of the zeroth law. Great. But the
zeroth law says that A and B are also in equilibrium, so there is some function

fAB (A1, . . . , B1 . . .) = 0. (4)

Furthermore, it must be possible to simplify Eq. 3 by cancelling the coordinates of system
C. Thus,

FA (A1, . . .)− FB (, B1 . . .) = 0. (5)

We’ll denote this function, the empirical temperature by Θ, so

ΘA (A1, . . .) = ΘB (, B1 . . .) . (6)

Thus: equilibrium of systems can be cast as a function that depends only on the coordi-
nates of one of the systems. Draw isotherm of ideal gas?

One can also say something along the lines of “The zeroth law is like an equivalence
relation between mathematical sets – the equivalence relation partitions the space of all
possible thermodynamic coordinates into mutually distinct subsets; let’s label those subsets
by something, and we’ll call that something “temperature.”

Ideal gas scale

The zeroth law states the existence of isotherms: e.g., ΘA (A1, . . .) = Θ Think of, e.g., ideal
gas law, or Curie paramagnet, or Hooke’s law for rubbers, or van der Waals gases, or.... To
construct an actual temperature scale we need a well-defined reference systems. Empirical
observation: the product of pressure times volume is constant along the isotherms of any
gas that is sufficiently dilute. Think of, e.g., a piston in the ocean or something The ideal
gas refers to the dilute limit of real gases (i.e., in the P → 0 or V → ∞ limits), and the
constant of proportionality is determined by reference to the triple point of the ice-water-
steam system, which was defined as 273.16◦K By the 10th General Conference on Weights
and Measures, 1954. Revisions in 1990? .

So define an empirical temperature by using a dilute gas as a thermometer:

T (◦K) ≡ 273.16
(

lim
P→0

(PV )system

)
/
(

lim
P→0

(PV )ice-water-steam

)
(7)
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0.3 1st Law

The first law is a statement about the conservation of energy, adapted for thermal systems.
We’ll formulate it as:

Statement

If the state of an adiabatically isolated system is changed by work, the amount of work is
only a function of the initial and final coordinates of the system. Draw, fake system with
a spring, magnet, etc., a coordinate space representation with initial and final points, and
many paths between them. ∆W doesn’t depend on path

Consequences

We infer the existence of another state function, the internal energy E(X). Think about
how the path-independence of the work we have to do when pushing a ball up a frictionless
hill in classical mechanics lets us deduce a potential energy.

∆W = E(Xf )− E(Xi) (8)

Similarly, in the same sense that the zeroth law let us construct some function of coordinates
that was relevant to equilbrium, the first law allows us to define another function, the internal
energy.
Draw some squiggly paths on the board.

The real content of the first law is when we violate the condition. That is, allow walls
that permit heat exchange, so that ∆W 6= Ef − Ei. We, of course, still believe energy is a
good, conserved quantity, so define heat :

∆Q = (Ef − Ei)−∆W. (9)

Clearly, though, ∆Q and ∆W are not separate functions of state, so we will use notation
like:

dE(X) = d̄Q+ d̄W, (10)

Where d means a differential where the thing is a function of state, and d̄ means that the
thing is path-dependent. Note the sign convention, here, where work and heat add energy
to the system.

Quasi-static transformation

A QS transformation is one which is done sufficiently slowly enough to maintain the system
in equilibrium everywhere along the path. For such a transformation the work done on the
system can thus be related to changes in the thermodynamic coordinates. Let’s divide the
state functions, X, into generalized displacements x and generalized forces J . Then, in a QS
transformation

d̄W =
∑
i

Jidxi (11)
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Common generalized coordinates

System generalized force generalized displacement

Wire tension F length L
Film surface tension σ area A
Fluid pressure −P volume V

Magnet field B magnetization M

Note that the displacements are generally extensive and the forces are generally intensive.
Question: We’ve written

dE =
∑
i

Jidxi + ? (12)

What is d̄Q? probably depends on T . What is it conjugate to?

Response functions

The usual way of characterizing the behavior of a system (measured from changes in ther-
modynamic coordinates with external probes). E.g.:

Force constants Measure the ratio of displacements to forces (think spring constants).
For example, isothermal compressibility of a gas : κT = 1

V
∂V
∂P

∣∣
T

Thermal response Response to change in temperature, such as the expansivity of a gas
αP = 1

V
∂V
∂T

∣∣
P

Heat capacity Changes in temperature upon adding heat. Note that heat is not a state
function, so the path is important! Example: For an ideal gas we could calculate CV = d̄Q

dT

∣∣
V

and CP = d̄Q
dT

∣∣
P

, and CP has to be bigger since we use some heat to change the volume:

CV =
d̄Q

dT

∣∣∣∣
V

=
dE − d̄W

dT

∣∣∣∣
V

=
dE + PdV

dT

∣∣∣∣
V

=
∂E

∂T

∣∣∣∣
V

. (13)

CP =
d̄Q

dT

∣∣∣∣
P

=
dE − d̄W

dT

∣∣∣∣
P

=
dE + PdV

dT

∣∣∣∣
P

=
∂E

∂T

∣∣∣∣
P

+ P
∂V

∂T

∣∣∣∣
P

.

Joule’s free expansion experiment

Take an adiabatically isolated gas, and let it expand (adiabatically, but we don’t need QS.
Draw on the board a two-chambered system) from Vi to Vf . Joule observed that the initial
and final temperatures are the same! Tf = Ti = T .

So, ∆Q = 0 and ∆W = 0, so ∆E = 0. We conclude that the internal energy actually
depends only on temperature: E(P, V, T ) = E(T ), i.e., a product of P and V . Note that since
E depends only on T , ∂E

∂T

∣∣
V

= ∂E
∂T

∣∣
P

, and we can simplify the heat capacity expressions:

CP − CV = P
∂V

∂T

∣∣∣∣
P

=
PV

T
= NkB. (14)

11



That last equality is a statement of extensivity, that PV/T is proportional to an amount of
stuff, and kB ≈ 1.4× 10−23J/K.

0.4 2nd Law

Why does heat flow from hot to cold? Why are there no perpetual motion machines that
work by turning water into ice while doing work? There are many equivalent formulations
of the 2nd law; in part because it is fun, we’ll see how practical concerns about burning coal
to do stuff leads directly to the idea of entropy and its inevitable increase!

Kelvin’s statement

No process is possible whose sole result is the complete conversion of heat to work (“No ideal
engines”)

Clausius’ statement

No process is possible whose sole result is the transfer of heat from cold to hot (“No ideal
refrigerators”)

Idealized work machines

We’ll quantify these statements by defining “figures of merit” for an ideal engine and an
ideal refrigerators.

The efficiency of an engine, a machine which takes QH of heat from a source, converts
some of it to work W , and dumps some QC of it into a sink, is

η =
W

QH

=
QH −QC

QH

≤ 1. (15)

The performance of a refrigerator, an engine running backwards, is

ω =
QC

W
=

QC

QH −QC

(16)

Of course, Kelvin and Clausius’ formulations are equivalent! To see this, hook up an
ideal engine to a fridge, and you get an ideal fridge (so, not Kelvin implies not Clausius).
Additionally, run an ideal fridge and take the heat from the exhaust to power an engine and
you get an ideal engine (so, not Clausius implies not Kelvin). Thus, Kelvin ⇐⇒ Clausius.

This seems trivial; with an excursion through Carnot Engines we’ll see that it lets us
answer a question posed in section 0.3, when we wrote:

dE =
∑
i

Jidxi + ?

12



Figure 1: Idealized engine (left) and refrigerators (right)

0.5 Carnot Engines

A Carnot Engine (CE) is any engine that (1) is reversible, (2) runs in a cycle, and (3) operates
by exchanging heat with a source temperature TH and a sink temperature TC . Note: (1) is
like a generalization of “frictionless” condition in mechanics. Lets us go forward/backward by
reversing inputs/outputs. (2) Start and end points are the same. (3) This is more precise than
the figure we drew in 1; the sinks and sources have well-defined thermodynamic temperatures.

Ideal gas Carnot Cycle

We know from the 0th law that we can select two ideal-gas isotherms to be the two tem-
peratures. For instance, we could go from A to B or from C to D in Fig. 2 by reversible,
adiabatic paths where we maintain the temperature. But how to go between the isotherms
adiabatically?

For an ideal gas, we know enough to compute the adiabatic curves. Let

E =
3

2
NkBT =

3

2
PV. (17)

Along a quasi-static path we have

d̄Q = 0 = dE − d̄W = d(
3

2
PV ) + pdV =

5

2
PdV +

3

2
V dP

⇒ 0 =
dP

P
+

5

3

dV

V
⇒ PV 5/3 = constant. (18)

Figure 2: Schematic of a Carnot Cycle for an ideal gas Note that even schematically
there is something obviously wrong with a path drawn here; do you see the error?

13



It’s fun to see (i.e., will probably be a homework problem), that one can construct adiabatics
for any two-parameter system with internal energy E(J, x).

Carnot’s Theorem

Off all engines operating between TH and TC , the Carnot engine is the most efficient!

Proof Take a Carnot Engine, and use a non-Carnot-Engine’s output to run the CE as a
refrigerator. Let primes refer to heat connected to the Carnot engine, and unprimes to the
NCE. The net effect is to transfer heat QH − Q′H = QC − Q′C from TH to TC . Clausius’
formulation tells us you can’t transfer negative heat, so QH ≥ Q′H . But the amount of work,
W , was the same, so

W

QH

≤ W

Q′H
⇒ ηCE ≥ ηNCE. (19)

0.5.1 Thermodynamic Temperature Scale

We established (by finding the adiabatic paths) that we can (in theory) construct a Carnot
Engine using an ideal gas. All Carnot engines operating between TH and TC have the same
efficiency show by using 1 to run the other backwards, and vice verse, so ηCE1 = ηCE2 . Thus,
the efficiency is independent of the engine; it must depend only on the temperatures, i.e. we
have η(TH , TC). So, already, if you can build a CE, it lets us define T independent of any
material properties, just by knowing efficiencies of CE’s at different T .

We’ll make progress by running two engines in series; one between T1 and T2, and the
other between T2 and T3, as in Fig. 3.

Figure 3: Schematic of Carnot engines in series

CE1 tells us
Q2 = Q1 −W12 = Q1(1− η(T1, T2)), (20)

CE2 tells us

Q3 = Q2 −W23 = Q2(1− η(T2, T3)) = Q1(1− η(T1, T2))(1− η(T2, T3)), (21)

and the combined engine tells us

Q3 = Q1 −W13 = Q1(1− η(T1, T3)). (22)

14



Comparing those last two expressions tells us

(1− η(T1, T3)) = (1− η(T1, T2))(1− η(T2, T3)), (23)

which is a constraint on the functional form that η can take. We postulate that

(1− η(T1, T2)) =
Q2

Q1

≡ f(T2)

f(T1)
. (24)

By convention, let f(T ) = T . Thus

η(TH , TC) =
TH − TC
TH

. (25)

We’ve done it! Up to a constant of proportionality, Eq. 25 defines a thermodynamic
temperature (and we’ll again set the constant using the triple point of water-ice-steam). By
running a Carnot cycle for an ideal gas you can show that the ideal gas scale and the thermo-
dynamic temperature scale are identical. This is not useful, but rather conceptual in showing
that temperature is not something that depends on the properties of a particular material.
Fun note: thermodynamic temperatures must be positive, otherwise Kelvin’s Formulation
could be violated

0.5.2 Clausius’ Theorem

Statement

For any cyclic process, with path parameterized by s∮
d̄Q(s)

T (s)
≤ 0, (26)

where the heat d̄Q(s) is an amount of heat delivered to the system at temperature T (s) we
need not be in equilibrium, so what is T (s)? The heat of the “machine” delivering the heat.

proof

We’ll hook up the system to a Carnot engine note that we have not specified the sign of
d̄Q; using a Carnot engine and thinking of the cycle as a series of infinitesimal cycles lets us
make sure we’re delivering whatever d̄Q(s) needs to be. Let the Carnot engine be at a given
reference temperature T0, as in Fig. 4A. To prove the theorem, simply reinterpret things by
pretending the Carnot engine and the system are a single “device.” It looks like the setup in
Fig. 4B. This looks dumb, but we’re done! To deliver heat at a specified temperature, our
efficiency functions from above tell us that d̄Q0 = T0d̄Q/T (s). So, From this view the net
extracted heat is ∮

d̄Q0(s) =

∮
T0
d̄Q(s)

T (s)
≤ 0, (27)

where the last inequality follows from Kelvin’s formulation: We can’t only convert Q to W !
This, as with so much Carnot engine manipulations, feels trivial. There are major conse-

quences!
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Figure 4: Clausius theorem setup (left) and reinterpretation (right)

1. Entropy! Let’s apply Clausius’ Theorem to a reversible transformation. Then we have

±
∮
d̄Qrev(s)

T (s)
≤ 0. (28)

Since both the plus and the minus version are less than or equal to zero, the integral vanishes.
Now, break the cycle into a path from A to B and from B to A “the other way.” (draw
picture). These integrals must be equal:∫ B

A

d̄Q1
rev(s)

T 1(s)
=

∫ B

A

d̄Q2
rev(s)

T 2(s)
, (29)

so since the integrals depend only on their endpoints∫ B

A

d̄Qrev(s)

T (s)
= SB − SA, (30)

where we’ve just defined a quantity we’ll call “entropy2” we have only defined it up to a
constant of integration, of course. For a reversible process we can now compute the heat
from d̄Qrev = TdS

2. The 1st Law, revisited For a reversible transformation that means we can now write,
from dE = d̄W + d̄Qrev,

dE =
∑
i

Jidxi + TdS. (31)

No big deal, just the most important expression in thermodynamics... note we’ve answered
one of our questions: the thing we’re calling entropy is an extensive generalized “displace-
ment” with T as it’s conjugate generalized force.

2“We might call S the transformational content of the body, just as we termed the magnitude U its
thermal and ergonal content. But as I hold it to be better to borrow terms for important magnitudes from
the ancient languages, so that they may be adopted unchanged in all modern languages, I propose to call the
magnitude S the entropy of the body, from the Greek word τρoπη, transformation. I have intentionally formed
the word entropy sa as to be as similar as possible to the word energy ; for the two magnitudes to be denoted
by these words are so nearly allied in their physical meanings, that a certain similarity in designation appears
to be desirable.” – Clausius, Ninth Memoir, On several convenient forms of the fundamental equations of
the mechanical theory of heat. For all that talk of borrowing terms for important magnitudes from ancient
languages, note that Clausius tried to name the unit of entropy “the Clausius,” a calorie per degree Celsius.
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3. Entropy increases for irreversible transformations Suppose we make an irre-
versible change as we go from state A to B, but then complete the cycle by making a
reversible transformation from B back to A. Clausius tells us that∫ B

A

d̄Q

T
+

∫ A

B

d̄Qrev

T
≤ 0⇒

∫ B

A

d̄Q

T
≤ SB − SA, (32)

which tells us that, in differential form, d̄Q ≤ TdS for any transformation. For an adiabatic
process, with d̄Q = 0, we’ve just learned that dS ≥ 0. As a system approaches equilibrium,
apparently the arrow of time points in the direction of increasing entropy, since changes in
a system’s internal state can only increase S.

4. How many independent variables do I need to describe an equilibrium system?
From Eq. 31 we see that if there n ways of doing mechanical work to a system (the n pairs
{Ji, xi}), then we need n+ 1 independent coordinates to describe equilibrium systems (i.e.,
if you know E then then J ’s and x’s are connected. This gives us freedom we’ll exploit later
in defining different ensembles, etc. For example, suppose we choose as our coordinates E
and all of the displacements xi; Eq. 31 gives us the relations

∂S

∂E

∣∣∣∣
{xi}

=
1

T
.

−∂S
∂xi

∣∣∣∣
{E,xj 6=i}

=
Ji
T
. (33)

0.6 3rd Law

I said last class I wouldn’t discuss this next – I’ve changed my mind, but we’ll be very brief!
We know from the second law how to compute the difference in entropy between two state
points at the same temperature: we make sure we perform operations reversibly, and then
calculate ∆S =

∫
d̄Qrev/T .

0.6.1 Nernst-Simon statement of the third law

The change in entropy associated with a system undergoing a reversible, isothermal process
approaches zero as the temperature approaches 0K:

lim
T→0

∆S(T )→ 0. (34)

Stronger Nernst statement

The entropy of all systems at absolute zero is a universal constant, which we will define to
be the zero point of the entropy scale: limT→0 S(X,T ) = 0.
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0.6.2 Consequences

1. Vanishing of entropy derivatives Since limT→0 S(~rX,T ) = 0 for all x, we must have
that

lim
T→0

∂S

∂xi

∣∣∣∣
T

= 0 (35)

2. Vanishing of thermal expansivities As T → 0, we must have

αJ =
1

x

∂x

∂T

∣∣∣∣
J

=
1

x

∂S

∂J

∣∣∣∣
T

. (36)

That second equality follows straightforwardly from a Maxwell relation, which we will go
through in the next section...

3. Vanishing of heat capacities As T → 0, we can write

S(X, T )− S(X, 0) =

∫ T

0

Cx(T ′)

T ′
dT ′, (37)

but that integral diverges unless
lim
T→0

Cx(T )→ 0. (38)

Unattainability of absolute zero in a finite number of steps Loosely, suppose we
are cooling a system by systematically reducing some conjugate force (e.g., cooling a gas
by adiabatic reductions in pressure). The 3rd Law says that the functions S(T ) for different
pressures must all merge at T = 0, so each step to lower T must involve progressively smaller
changes.

0.6.3 Brief discussion

Note that the “vanishing heat capacity” consequence above was (basically) Nernst’s original
formulation of the 3rd law! Much disagreement ensued, and the third law’s validity and
proper framing was debated hotly contested. Why? Because the 3rd law is very different in
character from the other laws of thermodynamics!

Microscopic origin of the laws We framed the last few lectures as “Thermodynamics
is a phenomenological theory: treat various substances as black boxes and try to deduce
a mathematical framework from observations.” But we know what’s inside the black box
(classical mechanics, quantum mechanics)!

1. 1st law: Conservation of energy (and heat is a form of energy)

2. 0th and 2nd laws: “irreversible approach to equilibrium.” Doesn’t immediately seem
to have an analog in microscopic equations of motions, but we’ll try to derive it later
as a consequence of N � 1.
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3. 3rd law: We’ll soon see statistical mechanical expressions like S = k ln g, where g is
a measure of the degeneracy of states: S → 0 ⇒ g = O(1) as T → 0. In classical
mechanics, this is simply not true! Just think of an ideal gas!. But, as T → 0, CM is
not appropriate. It is hardly surprising, then, that a law whose validity actually rests
on quantum mechanics was not well-understood or properly justified before QM itself
was.

0.7 Various thermodynamic potentials (Appendix H of

Pathria)

Mechanical equilibrium occurs at a minimum of a potential energy e.g., the mechanical
equilibrium of a mass between springs, etc. etc.. Thermal equilibrium similarly occurs at
the extremum of an appropriately defined thermodynamic potential. For example, in our
discussion of Clausius’ Theorem (Sec. 0.5.2) we found that the entropy of an adiabatically
isolated system increases after any change until it reaches a maximum in equilibrium. But
what about systems that are not adiabatically isolated? Or systems which are subject to
mechanical work? In this section we will define a handful of thermodynamic potentials that
are applicable.

Analogy with a mechanical system Briefly, suppose we have a mass on a spring con-
nected to a fixed wall, and let x be the deviation of the mass’s position away from the
equilibrium rest length of the spring. We take the potential energy to be U(x) = kx2/2,
which is clearly minimized when x = 0. What if we apply an external force – what will be
the new position of the mass? We could define a net potential energy which encompasses
this external work, H = kx2/2 − Jx, and set the variation of this with respect to x to be
zero:

∂H

∂x
= 0⇒ xeq = J/k, and Heq =

−J2

2K
. (39)

0.7.1 Enthalpy

What if the system is still adiabatically isolated (d̄Q = 0), but comes to equilibrium under a
constant external force? We define enthalpy, by analogy with the mechanical example above,
as

H = E − J · x. (40)

Variations in this quantity are given by

dH = dE − d(J · x) = TdS + J · dx− x · dJ − J · dx = TdS − x · dJ . (41)

Note that in general, at constant J the work added to the system is d̄W ≤ J · δx (where
equality occurs for reversible processes), so by the first law and making use of d̄Q = 0 we
have dE ≤ J · dx, which means that δH ≤ 0 as a system approaches equilibrium.
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0.7.2 Helmholtz Free energy

What if the system is undergoing an isothermal (constant T ) transformation in the absence
of mechanical work (d̄W = 0)? We define the Helmholtz free energy

F = E − TS, (42)

which has variations given by

dF = dE − d(TS) = TdS + J · dx− SdT − TdS = −SdT + J · dx. (43)

Note that Clausius’ theorem said that at constant T the heat added to the system is con-
strained by d̄Q ≤ TdS, so making us of d̄W = 0 we have dE = d̄Q ≤ TdS, so δF ≤ 0.

0.7.3 Gibbs Free Energy

What if the system is undergoing an isothermal transformation in the presence of mechanical
work done at constant external force? We define the Gibbs free energy by

G = E − TS − J · x, (44)

which has variations given by

dG = dE − d(TS)− d(J · x) = · · · = −SdT − x · dJ . (45)

Note that in this case, we have both d̄W ≤ J · δx and d̄Q ≤ TdS, so δG ≤ 0

0.7.4 Grand Potential

Traditionally “chemical work” is treated separately from mechanical work... for chemical
equilibrium in the case of no mechanical work, we define the Grand potential by

G = E − TS − µ ·N , (46)

where N refer to the number of particles of different chemical species, and µ refers to the
chemical potential for each of them. Variations in G satisfy

dG = −SdT + J · dx−N · dµ. (47)

0.7.5 Changing variables

In the last several subsections we’ve seen how to use Legendre transformations to move
between different natural variables depending on the physical situation we find ourselves in.
So, for instance, for adiabatically isolated systems with constant external force, we look at
the enthalpy, which has natural variables H(J , S); for isothermal transformations with no
external work we look at the Helmholtz free energy, which has natural variables F (x, T ),
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etc. The equilibrium conjugate variables can then by found by partial differentiation. For
instance, the equilibrium force and entropy can be found from F by

Ji =
∂F

∂xi

∣∣∣∣
T,xj 6=i

and S = − ∂F

∂T

∣∣∣∣
x

. (48)

Are there any limits on the manipulations we can perform here? For each set of conjugate
force/displacement variables, can we always transform to choose whatever we want? No..
Let’s see why

0.8 Two bits of math!

0.8.1 Extensivity (and Gibbs-Duhem)

Let’s look at the differential for E, including chemical work:

dE = TdS + J · dx+ µ · dN . (49)

In general the extensive quantities are proportional to the size of the system, which we can
write mathematically as

E(λS, λx, λN ) = λ(S,x,N ). (50)

Please note that this is not a requirement, nor does it have the same footing as the rest of
the laws of thermodynamics; it is simply a statement about the behavior of “most things.”
Let’s take the above and differentiate with respect to λ and then evaluate at λ = 1. This
gives

∂E

∂S

∣∣∣∣
x,N

S +
∂E

∂xi

∣∣∣∣
S,xj 6=i,N

xi +
∂E

∂Nα

∣∣∣∣
S,x,Nβ 6=α

Nα = E(S,x,N ). (51)

Note that the partial derivates here are (in order) T , Ji, and µα. This leads to what some
people write as the fundamental equation of thermodynamics:

E = TS + J · x+ µ ·N . (52)

Combining equations 49 and 52 lead to a constraint on allowed variations of the intensive
coordinates:

SdT + x · dJ +N · dµ = 0, (53)

which is the Gibbs-Duhem relation. Again, this is valid for extensive systems, as defined
by Eq. 50. Also, this answers the question at the end of the last section: you cannot (use-
fully) transform to a potential where the natural coordinates are all intensive, because these
intensive coordinates are not all independent.

0.8.2 Maxwell relations

“Maxwell relations” follow from combining thermodynamic relationships with the basic prop-
erties of partial derivatives. If f , x, and y are mutually related, we can write

df(x, y) =
∂f

∂x

∣∣∣∣
y

dx+
∂f

∂y

∣∣∣∣
x

dy, (54)
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and we will then combine this with symmetry of second derivations,

∂

∂x

∂f

∂y
=

∂

∂y

∂f

∂x
, (55)

to related various thermodynamic derivatives.

Example

For instance, let’s start with dE = TdS + Jidxi. We know, mathematically, that we can
immediately write

T =
∂E

∂S

∣∣∣∣
x

and Ji =
∂E

∂xi

∣∣∣∣
S,xj 6=i

. (56)

We can take the mixed derivatives and discover a relationship:

∂2E

∂S∂xi
=

∂T

∂xi

∣∣∣∣
S

=
∂Ji
∂S

∣∣∣∣
x

, (57)

where we might call the latter equality a Maxwell relation.

Strategy for deriving Maxwell relations

There are several tricks to remembering how to rapidly find the Maxwell relation relevant
to a particular expression. In the homework you will go through a method using Jacobian
matrices.

Logically, though, it’s not so hard to always construct them on the fly. Suppose someone
asks you to find a Maxwell relation for

∂A

∂B

∣∣∣∣
C

. (58)

We’ll do the following: (1) write down the fundamental expression for dE, (2) transform it
so that A will appear in a first derivative and B and C are differentials, and (3) profit.

Worked example:

I want to know (∂µ/∂P )|T for an ideal gas.

Step 1 We write
dE = TdS − PdV + µdN. (59)

Step 2 We note that µ is already in a position to appear in first derivatives. Moving on,

d(E − PV ) = TdS − V dP + µdN (60)

d(E − PV − ST ) = −TdS − V dP + µdN. (61)
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We did not really care what the name of (E − PV − ST ) was, let’s just call it Y . Clearly

µ =
∂Y

∂N

∣∣∣∣
T,P

and V =
∂Y

∂P

∣∣∣∣
T,N

, (62)

so
∂µ

∂P

∣∣∣∣
T

=
∂V

∂N

∣∣∣∣
T

. (63)

Step 3 We’re done.
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Chapter 1

Probability

In the last chapter we treated thermodynamics as a phenomenological theory, building up a
consistent mathematical framework that expressed the consequences of experimental obser-
vations of various black box systems. Ultimately we will want to see how these properties
arise from the microscopic rules that real systems evolve according to; to do so we will be
expressing the statistical consequences of having large numbers of interacting units. In this
brief chapter we will cover the parts of probability theory that we will be using. Since much
of this is standard definitional stuff, we will also be sure to cover calculational methods and
tricks that will serve us down the road.

1.1 A funny observation

Figure 1.1: Compressing randomly generated strings The average ratio of the length of
a compressed random string to its original length is bounded by the entropy of the probability
distribution used to generate it.

The other day1 I was generating random strings of characters in the English language...
just things like “dynbaggdaaejfgoafkoadbdbadaenncadykabkfaaapkabpgabgciicecyktvaenoaeacgjc”
or “tgxcabgljndjaankbafbohoewjmfvracaevwfmdmabbagtbbaabnhabfjvpdcbacfycalsjac”, etc.

1for fun, you know?
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I started compressing these strings using an off-the-shelf algorithm on my computer, gzip,
and compared the length of the compressed string to the length of the original string. I
repeated this a bunch of times, for sequences of different length, and for different proba-
bility distributions from which I was generating my random strings (if you’re curious, they
were power-law distributions parameterized by a decay strength α). The results are in Fig.
1.1, and I was shocked! Apparently, as I started compressing longer and longer strings, the
amount I was able to compress them was bounded by what I’ve labeled H(α) in the figure
– the entropy of the probability distribution! How is entropy – which so far seems like a
thermodynamic concept – related to computation and information compression? Let’s find
out!

1.2 Basic Definitions

Random variable: A random variable x is a measurable variable described by a set of
possible outcomes, S. This could be a discrete set, as for a coin Scoin = {heads, tails}, or a
continuous range, as for a particle’s velocity Svx = {−∞ ≤ vx ≤ ∞}. We call each element
of such a set as an event E ⊂ S

Probability We will assign a value, called the probability to each event, denoted p(E),
which has the following properties:

1. positivity: p(E) ≥ 0

2. additivity: p(A or B) = p(A) + p(B) if A and B are distinct.

3. normalization: p(S) = 1.

We’re not mathematicians, so we won’t be starting from here and proving stuff. Rather, you
may wonder, “how will we determine p(E)?” By one of two ways:

1. Objectively: (experimentally, frequentist) p(E) is the frequency of outcome in many
trials:
p(E) = limN→∞NE/N

2. Subjectively: (theoretically, Bayesian) Based on our uncertainty among all outcomes.
We’ll see this is what we’ll really use in stat phys! We’ll formalize this later.

1.3 Properties of single random variables

Let’s focus on random variables which are continuous and real-valued (the specialization to
discrete ones is straightforward; we’ll see an example in the next section).

Cumulative probability function: P (x) = probability(E ⊂ [−∞, x]). This must be a
monotonically increasing function, with P (−∞) = 0 and P (∞) = 1.
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Figure 1.2: Changing variables from x to F (x)

Probability density function (pdf): p(x) = dP (x)/dx, so that p(x)dx = probability(E ⊂
[x, x + dx]). The pdf must be everywhere positive, and normalized so that

∫∞
−∞ p(x)dx = 1.

Note: P (x) is dimensionless, which means p(x) has dimensions of [x−1].

Expectation value 〈F (x)〉 =
∫
dxp(x)F (x)

Change of variables Suppose x is a random variable and we have a function of it, F (x).
We can regard F (x) itself as a new random variable. The probability that we find F in some
interval between f and f + df is written pF (f)df , and it equals2 pX(x)dx (see Fig. 1.2). Or,
rather, we have that |pF (f)df | = |pX(x)dx|, since the probability in some differential area
must should be invariant under a change of variables.

But we need to add up as many pieces of x contribute. Thus, we first solve F (x) = f ,
and call the set of solutions xi. We can then write:

pF (f) =
∑
i

p(xi)

∣∣∣∣dxdf
∣∣∣∣
xi

. (1.1)

In standard texts you will usually see the dx
df

written in terms of inverse functions, but the

meaning is clear (and it is the slope). Note that the factors of
∣∣∣dxdf ∣∣∣ are the Jacobians used

to change variables.

Trivial example Suppose we have a random variable x with pdf pX(x) = 3x2

defined in the interval 0 < x < 1, and we look at a new random variable Y = X2.

2One can go back to the definition of the cumulative probability function to show this is true for mono-
tonically increasing or decreasing functions; it is more work to show it for the sorts of piecewise monotonic
functions we might want to consider
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This is easily invertible in the range, and we can write x(y) =
√
y, and dx/dy =

y−1/2/2. Thus

pY (y) = pX(x)

∣∣∣∣ 1

2
√
y

∣∣∣∣ =
3

2
(
√
y)2 1
√
y

=
3

2

√
y, (1.2)

defined in the range 0 < y < 1.

2-valued example Suppose instead that we have a random variable x where

p(x) =
λ

2
exp (−λ|x|) ,

defined for any x on the real line. We want to know the probability density func-
tion for the random variable F (x) = x2. There are, by inspection, two solutions
to F (x) = f (when f is positive!), and they are x = ±

√
f . The derivatives we

need are |dx/df | = | ± 1
2
√
f
|. Thus, we have:

pF (f) =
λ

2
exp(−λ

∣∣∣√f
∣∣∣) ∣∣∣∣ 1

2
√
f

∣∣∣∣+
λ

2
exp(−λ

∣∣∣−√f
∣∣∣) ∣∣∣∣ −1

2
√
f

∣∣∣∣ =
λ exp

(
−λ
√
f
)

2
√
f

,

for any f > 0 (and pF (f) = 0 for f < 0).

Moments We define the nth moment to be mn ≡ 〈xn〉
∫
dx xnp(x)

Characteristic function The characteristic function is simply the Fourier transform of
the pdf:

p̃(k) = 〈e−ikx〉 =

∫
dx p(x)e−ikx. (1.3)

Likewise, if you know the characteristic function, the pdf is the inverse FT:

p(x) =
1

2π

∫
dk p̃(k)eikx. (1.4)

We can use the characteristic function to generate the moments of the pdf (assuming
the moments exist!). Making that assumption, let’s expand the exponential in the definition,

exp(−ikx) =
∑∞

n=0
(−ik)n

n!
xn, so that

p̃(k) = 〈
∞∑
n=0

(−ik)n

n!
xn〉 =

∞∑
n=0

(−ik)n

n!
〈xn〉, (1.5)

so that if you can expand the characteristic function in powers of k, the coefficients of the
expansion give you the moments (up to some factor of ±n!). Note that in general the moment
generating function is defined differently from the characteristic function for precisely such a
reason: the MGF may not always exist. We can do manipulations of this type of expression
to get, e.g., relative moments pretty easily:

eikx0 p̃(k) = 〈exp(−ik(x− x0))〉 =
∞∑
n=0

(−ik)n

n!
〈(x− x0)n〉. (1.6)
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Figure 1.3: Graphical expansion of the first three moments s

Cumulant genenerating function Let’s define the cumulant generating function to be
the log of the characteristic function, and expand it in what we will define to be the cumu-
lants. Note: some people would call this the “second characteristic function.” The difference,
again, is whether we end up with something which is always defined regardless of whether
the moments themselves are well-defined.

ln p̃(k) ≡
∞∑
n=1

(−ik)n

n!
〈xn〉c. (1.7)

ln p̃(k) = ln

(
1 +

∞∑
n=1

(−ik)n

n!
〈xn〉

)
(1.8)

=

(
∞∑
n=1

(−ik)n

n!
〈xn〉

)
− 1

2

(
∞∑
n=1

(−ik)n

n!
〈xn〉

)2

+
1

3

(
∞∑
n=1

(−ik)n

n!
〈xn〉

)3

+ · · ·(1.9)

We can then relate the cumulants to the moments by comparing Eqs. 1.7 and 1.8 and
matching terms of order kn. For example, the first two are pretty easy to see:

〈x〉c = 〈x〉 (1.10)

〈x2〉c = 〈x2〉 − 〈x〉2 =
〈
(x− 〈x〉)2

〉
(1.11)

(1.12)

Why do we care? The cumulants are, in a sense, a collection of most important ways of
describing a distribution (mean, variance, skewness, kurtosis, etc.).

Graphical connection between moments and cumulants The combinatorics of co-
efficient matching above might seem difficult to parse; there is a fun graphical way of re-
membering how to connect moments and cumulants. Notationally, let’s represent the nth
cumulant as a bag with n points inside of it (conveniently, since 〈x〉c = 〈x〉, a bag with
one point is the same as one point on its own). Then, the mth moment can be graphically
expressed as the sum of all ways of distributing m points among bags. See Fig. 1.3.

Slightly more formally, one might say you represent the nth cumulant as a connected clus-
ter of points, and obtain the mth moment by adding together all subdivisions of m points
into groupings of connected or disconnected clusters. The contribution of each subdivision
to the sum is then the product of the connected cumulants it represents. This graphical con-
nection between moments and cumulants is the basis for several diagrammatic computations
(in stat mech, in field theory,...) Will we see it again in this class? Stay tuned...
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1.4 Important distributions

1.4.1 Binomial distribution

Given a discrete random variable with two outcomes, which occur with probability pA and
pB = 1− pA, the binomial distribution gives the probability that event A occurs exactly NA

times out of N trials. It is equal to

PN(NA) =

(
N

NA

)
pNAA pN−NAB ,

(
N

NA

)
=

N !

NA!(N −NA)!
. (1.13)

The characteristic function for the discrete distribution is

p̃N(k) = 〈e−ikNA〉 =
N∑

NA=0

N !

NA!(N −NA)!
pNAA pN−NAB e−ikNA =

(
pAe

−ik + pB
)N

. (1.14)

This has the properties that we can easily relate the cumulant generating function for the
N -trial case to that of the 1-trial case:

ln p̃N(k) = N ln
(
PAe

−ik + pB
)

= N ln p̃1(k). (1.15)

For a single trial, NA can only be either zero or one, which means that we must have
〈Nm

A 〉 = pA for all powers m. Combining this property of the moments with the above
feature of the cumulants, we learn that the cumulants for the N -trial case are

〈NA〉c = NpA, 〈N2
A〉c = N

(
pA − p2

A

)
= NpApB, (1.16)

and higher order cumulants can be easily calculated. We’ll see that this type of feature –
where there is a trivial relation between an independent thing repeated N times and the
case of an individual trial – will be of great use as we build up statistical mechanics.

1.4.2 Poisson distribution

We’ll get at the Poisson distribution, a continuous pdf, relating it to the binomial distribution.
Consider a process in time where two properties hold. First, the probability of observing
(exactly) one event in the interval [t, t+dt] is proportional to dt in the limit dt→ 0. Second,
suppose the probability of observing an event in different intervals is uncorrelated. Example:
radioactive decay. Then, the Poisson distribution is the probability of observing exactly M
events in the interval T .

We get the details of the distribution by imagining dividing up the interval T into many
segments of length dt, say N = T/dt � 1 such that dt is so small the probability of
observing more than one event is negligible. So, in each segment we have an event occurring
with probability p = αdt and no event occurring with probability q = 1 − p. From our
expression for the binomial distribution, we immediately know the characteristic function
for this process:

p̃(k) =
(
pe−ik + q

)N
= lim

dt→0

(
1 + αdt((e−ik − 1)

)T/dt
= exp

(
α(e−ik − 1)T

)
, (1.17)
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where the last equality is an example of the famous Euler limit formula. Knowing the char-
acteristic function, we can take the inverse Fourier transform to get the pdf:

p(x) =

∫ ∞
−∞

dk

2π
exp

(
α(e−ik − 1)T + ikx

)
. (1.18)

This can be solved You, the reader should verify this! by expanding the exponential, and
using ∫ ∞

−∞

dk

2π
e−ik(x−M) = δ(x−M)

to get the probability of M events in a time T for a process characterized by α as

pαT (M) = e−αT
(αT )M

M !
. (1.19)

Additionally, the cumulants can be read off of the expansion of the log characteristic function

ln p̃αT (k) = αT (e−ik − 1) = αT
∞∑
n=1

(−ik)n

n!
⇒ 〈Mn〉c = αT. (1.20)

That is, while the binomial distribution has the property that every moment is the same,
the Poisson distribution has the property that every cumulant is the same.

1.4.3 Gaussian distribution

We will definitely, definitely use this, you know? Define the gaussian pdf as

p(x) =
1√

2πσ2
exp

(
−(x− λ)2

2σ2

)
. (1.21)

The characteristic function is compute by the usual means of completing the square inside
the integral, a trick I believe we all know:

p̃(k) =

∫
dx√
2πσ2

exp

(
−ikx− (x− λ)2

2σ2

)
(1.22)

= e−ikλ
∫

dy√
2πσ2

exp

(
−iky − y2

2σ2
+
k2σ2

2
− k2σ2

2

)
, for y = x− λ (1.23)

= e−ikλ−
k2σ2

2

∫
dz√
2πσ2

exp

(
−z2

2σ2

)
, for z = y + ikσ2 (1.24)

= exp

(
−ikλ− k2σ2

2

)
(1.25)

A manipulation that shows that the Fourier transform of a Gaussian is, itself, a Gaussian.
The cumulants of this are easily identified:

ln p̃(k) = −ikλ− k2σ2

2
, (1.26)
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immediately showing that

〈x〉c = λ, 〈x2〉c = σ2, 〈xn>2〉c = 0. (1.27)

So, the Gaussian is completely specified by its first two cumulants, and all moments involve
only products of one- and two-point clusters.

1.5 Properties of multiple random variables

Joint probability density function We define, by analogy, the joint pdf p(x1, x2, . . . , xN)
as

p(x) = lim
{dxi→0}

prob. of outcome in {(x1, x1 + dx1), . . . , (xN , xN + dxN)}
dx1dx2 · · · dxN

. (1.28)

The normalization of the joint PDF is

px(S) = 1 =

∫
dNxp(x), (1.29)

and iff the N random variables are independent, then the joint pdf simplifies to the product
of the individual probability density functions:

p(x) =
N∏
i=1

pi(xi)). (1.30)

Joint characteristic function is just the N -dimensional Fourier transform:

p̃(k) = 〈exp(−ik · x〉 =

∫ (∏
i

dxie
−ikixi

)
p(x1, . . . , xN). (1.31)

Joint moments and cumulants Are defined perfectly analogously with the moments
and cumulants of single random variable distributions. Recall that last lecture we talked
about moments as related to the coefficient of the relevant power of k... more generally we
can express these as the following derivatives:

〈xm1
1 xm2

2 · · ·x
mN
N 〉 =

[
∂

∂(−ik1)

]m1

· · ·
[

∂

∂(−ikN)

]mN
p̃(k)|k=0 (1.32)

〈xm1
1 xm2

2 · · ·x
mN
N 〉c =

[
∂

∂(−ik1)

]m1

· · ·
[

∂

∂(−ikN)

]mN
ln p̃(k)|k=0 . (1.33)

As a simple – but perhaps the most important – example, the “co-variance” between two
random variables is

〈x1x2〉c = 〈x1x2〉 − 〈x1〉〈x2〉. (1.34)

The graphical expansion we wrote earlier still applies; one just has to label the points by
the corresponding variables. See Fig. 1.4.
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Unconditional probability: The unconditional PDF describes the PDF for a subset of
random variables independent of what the others are doing:

p(x1, . . . , xm) =

∫ ( N∏
i=m+1

dxi

)
p(x1, . . . , xN). (1.35)

For example, a gas particle would generically have a PDF over both its position and velocity,
p(x,v), but we might only care about the distribution of positions, so we would integrate
out the velocities:

p(x) =

∫
d3vp(x,v)

Conditional probability: The conditional PDF describes the behavior of a subset of
the random variables given specified values for the other random variables. Following the
above example, suppose we are interested in the conditional probability of a velocity given
a position, denoted p(v|x). This should be proportional to the full joint PDF:

p(v|x) =
p(x,v)

A
,

where the constant of proportionality is just the probability of having that value of position
in the first place:

A =

∫
d3vp(x,v) = p(x).

This is given by Bayes’ Theorem, and in general we write the connection between condi-
tional and unconditional PDFs as

p(x1, . . . , xs|xs+1, . . . , xN) =
p(x1, . . . , xN)

p(xs+1, . . . , xN)
. (1.36)

We see that in the case of independent random variables, the conditional probability is the
same as the unconditional probability. Right?

Joint Gaussian distribution You might have thought the natural generalization of Eq.
1.21 was

p(x) =
1√∏N

n=1 2πσ2
n

exp

(
−1

2

N∑
n=1

−(xn − λn)2

σ2
n

)
. (1.37)

Figure 1.4: Graphical expansion of a joint moment
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but this neglects the potential for cross-correlations! The most general form is, instead,

p(x) =
1√

(2π)N detC
exp

(
−1

2

N∑
n,m=1

(xn − λn)(xm − λm) (C)−1
nm

)
, (1.38)

where the matrix C is symmetric, and for p(x) to be a well-defined probability the matrix
C must be positive definite. We can write this somewhat more compactly as

p(x) =
1√

(2π)N detC
exp

(
−1

2
(x− λ)TC−1(x− λ)

)
. (1.39)

The matrix C is called the covariance matrix. If one goes through and performs the fourier
transform on the above joint PDF, one finds

p̃(k) = exp

(
−ik · λ− 1

2
kTCk

)
, (1.40)

or, in index notation,

p̃(k) = exp

(
−ikmλm −

1

2
kmCmnkn

)
. (1.41)

The latter re-writing lets us immediately read off the joint cumulants of the joint Gaussian
distribution:

〈xm〉c = λm, 〈xmxn〉c = Cmn, (1.42)

with all higher-order cumulants vanishing.

Note that there is an important special case when λ = 0. Consider the joint
cumulant

〈xn1
1 x

n2
2 · · ·x

nN
N 〉 , (1.43)

and think about the combinatorics of the graphical expansion we’ve been dis-
cussing.
First, if the sum of the ni is odd, then in the graphical expansion there is no way
to avoid a term with an odd-power cumulant, and in this special case of the joint
Gaussian distribution with λ = 0, all such terms are zero!
Second, if the sum is odd, we know that there will only be contributions from
combinations of covariances : all even-power cumulants with power greater than
two vanish because we are dealing with the joint Gaussian. Thus, the cumulant
can be obtained by all ways of summing over pairs of the random variables. For
example,

〈xixjxkxl〉 = CijCkl + CikCjl + CilCjk, (1.44)

where it didn’t matter if the i, j, k, l were distinct. For instance:〈
x2

1x2x3

〉
= C11C23 + 2C12C13. (1.45)

This property of the joint Gaussian distribution is sometimes summarized as:

〈xn1
1 x

n2
2 · · ·x

nN
N 〉 =

{
0 if

∑
α nα is odd

Sum over all pairwise contractions of covariances else
(1.46)

In this formulation, we see the analogy of Wick’s Theorem applied to fields.
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1.6 Math of large numbers

We typically think of statistical mechanics being relevant when the number of microscopic
degrees of freedom, N , becomes very large; indeed, in the thermodynamic limit, N → ∞,
a number of mathematical simplifications become available to our analysis of how systems
behave.

1.6.1 The Central Limit Theorem

The central limit theorem, which I trust we have all encountered before, is a core engine
in allowing us to make precise statements of the sort we encountered in thermodynamics.
For instance, we observed that heat flows from hot to cold – not sometimes, or most of the
time, but always. If we’re going to make probabilistic arguments at the microscopic core,
how do we end up with precise, essentially deterministic thermodynamic statements? We’ll
make the case for the classical CLT, by the way, not the Lyapunov or other versions with
weaker conditions.

Let’s start by considering the sum of N random variables, X =
∑N

i=1 xi, where the
random variables xi have some joint PDF p(x). What is the cumulant generating function
of the sum, ln p̃X(k)? Well,

ln p̃X(k) = ln
〈
e−ikX

〉
= ln

〈
exp(−ik

N∑
i=1

xi

〉
= ln p̃x (k1 = k, k2 = k, . . . , kN = k) , (1.47)

That is, it is the same as the log of the joint characteristic function of the xi, but evaluated
at the same k. Let’s expand each side of the above equation, writing things so we can easily
match powers of k:

∞∑
n=1

(−ik)n

n!
〈Xn〉c = (−ik)

N∑
i=1

〈xi〉c +
(−ik)2

2!

N∑
i,j=1

〈xixj〉c + . . . (1.48)

Matching terms of order kn, we see that

〈X〉c =
∑
i

〈xi〉c, 〈X2〉c =
∑
i,j

〈xixj〉c, . . . (1.49)

Now, we specialize to the case of the classical central limit theorem by supposing that
the xi are both independent, so that p(x1, . . . , xN) = p1(x1)p2(x2) · · · pN(xN) and identically
distributed, i.e., each of the labeled probability distributions pi(x1) are the same, so that

p(x1, . . . , xN) =
N∏
i=1

p(xi). (1.50)

This combination of conditions, independent and identically distributed, is often abbreviated
iid. Now, the fact that the variables are independent means that the cross-correlations in
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Eq. 1.49 vanish (do you see why the math tells us this?), so that in the double sum only
terms with i = j contribute. Thus, we get that

〈Xm〉c =
N∑
i=1

〈xmi 〉c (1.51)

. The condition of identically distributed takes us back to the case we looked at with the
binomial distribution: the cumulants of N repeated but independent draws from the same
distribution are easily related to the cumulants of the single-random-variable distribution:

〈Xm〉c =
N∑
i=1

〈xmi 〉c = N 〈xm〉c . (1.52)

The (classical) Central Limit Theorem follows directly. Define a new random variable to
be

y =
X −N 〈x〉c√

N
, (1.53)

and then one computes its cumulants:

〈y〉c = 0,
〈
y2
〉
c

=
〈X2〉c√
N

=
〈
x2
〉
c
, 〈ym〉 =

N 〈xm〉c
Nm/2

. (1.54)

In words: as N becomes large, distribution for a sum of random variables with mean µ and
variance σ2 converges to a distribution that itself has a finite mean, a variance that only
grows as

√
N , and higher-order cumulants that all decay to zero as N →∞. Thus, sums of

random variables converge to normal distributions, rather ignoring the details of what the
original random variables looked like (up to some point). Note that the condition is really on
the existence of the moments in question, and a condition on how correlated the variables
are allowed to be:

N∑
i1,...im

〈xi1 . . . xim〉c � O(Nm/2).

1.6.2 Adding up exponential quantities

In stat mech we tend to run into (1) intensive variables (like T , P , etc.), which are indepen-
dent of system size (O(N0)), (2) extensive variables (like S, V , etc.), which scale linearly
with system size (O(N1)), and (3) exponential variables (like volumes of phase space), which
are independent of system size (O(V N) = O(eaN). Of course, polynomial dependences, etc.,
are also possible and sometimes arise (especially in interesting systems). The behavior of
adding exponential quantities together makes calculating thermodynamic limits possible
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Summing exponentials

Frist, suppose we have a sum of a large number of exponentially large numbers:

S =
N∑
i=1

Ei, (1.55)

where the terms 0 ≤ E1 ∼ O(exp(Nai)) and we are summing up N ∼ O(NP ), a number of
terms that grows at most polynomial in N .

Claim We can approximate the entire sum just by the largest term! That is,

S ≈ Emax. (1.56)

proof We mean that claim in a specific sense, as follows. First, it is clear that the we can
bound the sum by

Emax ≤ S ≤ NEmax. (1.57)

Now, let’s switch to an intensive variable by first taking lnS and then dividing by N . This
gives the bounds:

Emax
N
≤ lnS

N
≤ Emax

N
+

lnN
N

, (1.58)

but
lnN
N

=
p lnN

N
(1.59)

according to our assumption, and this goes to zero as N →∞. Thus,

lim
N→∞

lnS

N
=

ln Emax
N

= amax. (1.60)

So, even if the second-largest ai is only slightly less than the maximum one, upon exponen-
tiation N times it gets completely dominated by the larger term. Think about going from
the microcanonical ensemble (where you specified precisely all of the energies, NV E, and
are summing over energy levels), or the canonical ensemble (where you do not, NV T ); you
get the same result because the system behavior is dominated by the most likely energy.

Integrating exponentials – Saddle-point integrations

We generalize the above result to get a simple version of saddle-point integration3. We wish
to make a similar claim about the integral, I =

∫
dx exp(Nφ(x)) being dominated by the

place where the function φ(x) itself is maximized. Well, let’s Taylor expand φ about its
maximum xm (which I emphasize so you remember the first derivative vanishes and the
second derivative is negative):

I =

∫
dx exp

(
Nφ(xm)− N

2
|φ′′(xm)|(x− xm)2 + · · ·

)
(1.61)

3c.f. the section of Pathria in Chapter 3 which treats more general integrands with integration paths in
the complex plane
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This term has two types of corrections encoded in that set of · · · . First, of course, there
are the higher-order terms in the expansion of the function φ(x) about its maximum value;
these terms lead to a power series in 1/N . Second, there could be contributions to this sum
from additional local maximum. But, by arguments similar to those made in the previous
subsection, any such contribution will be completely subdominant! Thus, we truncate the
series at quadratic order as above and write

I = eNφ(xm)

∫
dx exp

(
−N

2
|φ′′(xm)|(x− xm)2

)
, (1.62)

which is just another Gaussian integral, but one missing its normalization factor, so

I = eNφ(xm)

√
2π

N |φ′′(xm)|
⇒ lim

N→∞

ln I
N

= φ(xm). (1.63)

Note / example: Stirling’s approximation The above machinery can be used to derive
Stirling’s approximation for the factorial. Start by noting that

N ! =

∫ ∞
0

xNe−x, (1.64)

which can be see by starting with
∫∞

0
exp(−αx) = 1/α, and then taking N derivatives and

setting α = 1. Some rearrangements of the above equation (writing φ(x) = ln x − x/N),
expanding about xm = N , and doing the Gaussian integral gets you to

N ! = NNe−N
√

2πN

(
1 +O

(
1

N

))
, (1.65)

the log of which is Stirling’s formula. Filling in the missing steps should be straightforward,
but also an excellent way to make sure you understand the machinery of this method.

1.7 Information Entropy

We end this chapter by thinking about an information-based view of what we mean by
entropy, one introduced by Shannon in a groundbreaking 1948 paper4. We will discuss the
connection between information and entropy, and by thinking about ‘unbiased” ways of
assigning probabilities, we will formalize the subjective procedure of assigning probabilities
discussed at the beginning of this chapter.

4which you can read at this harvard site:
http://people.math.harvard.edu/ ctm/home/text/others/shannon/entropy/entropy.pdf. Note that Shannon
named the symbol of entropy H, after Boltzmann’s H-theorem, which we’ll encounter in the very next
chapter.
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1.7.1 Shannon entropy

We briefly change our focus from thermodynamics and statistical physics to a setting which
seems very different: the problem of sending messages over a wire. We begin by imagining a
source trying to send us a message from an “alphabet” of k characters, {a1, . . . , ak} that have
an discrete associated probability distribution p(ai), X = {ai, p(ai)}. (Think, for instance,
of the actual alphabet, where indeed some letters appear more frequently than others in real
messages.), where we will assume that the characters are iid (In real messages there are, of
course, correlations; we neglect them in this idealized setting). With this assumption, the
probability that the source sends the n-character message x = x1x2 · · ·xn is just

p(x) =
n∏
i=1

p(xi). (1.66)

Let’s denote the entire ensemble of n-length messages chosen with the assumption that the
xi are iid by Xn.

Compressing messages Suppose the length of the message, n, grows very large. In this
setting, is it possible to compress the message into a shorter string that conveys the same
“information”? As long as p(ai) is not uniform, then yes! The total number of messages is
kn, but for large n, we expect each character to occur about ni = np(ai) +O(n−1/2) times.
So the number of typical strings, g, is not kn but rather

g =
n!∏k

i=1(np(ai))!
. (1.67)

Applying Stirling’s formula, we find that

log2 g ≡ nH(X) ≈ −n
k∑
i=1

p(ai) log2 p(ai), (1.68)

where H(X) is the Shannon entropy of the ensemble X = {ai, p(ai)}. If we imagine adopting
a code for messages of length n where integers label “typical” messages of such length, a
typical n-letter string could be communicated using about nH(X) bits. To be extra explicit,
for discrete probability distributions with values {pi} we will be defining the entropy in this
way:

S = H(X) = −〈ln p〉 = −
∑
i

pi ln pi. (1.69)

Compressing binary messages Let’s briefly show this in more detail for a
binary alphabet: each character is either zero with probability p or one with
probability 1 − p, so the ensemble X is completely specified by the single value
p. Well, for large values of n there are going to be about np zeros and n(1 − p)
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ones, and the number of distinct strings of this form is given by the binomial
coefficient. So, using log x! = x log x− x+O(log x), we have:

log g = log

(
n

np

)
= log

(
n!

(np)!(n(1− p))!

)
(1.70)

≈ n log n− n− (np log(np)− np+ n(1− p) log(n(1− p))− n(1− p))(1.71)

= nH(p), (1.72)

for H(p) = −p log p− (1− p) log(1− p). (1.73)

What about actual compression? Again, we make up an integer code that labels
every typical message. There are about 2nH(p) messages, and a priori typical
messages occur with equal frequency, so we need to specify a given message by
a binary string whose length is about nH(p). If p = 1/2 (and thus H(p) = 1
for log2) we haven’t done anything: we need as many bits to communicate the
message as there are in the message. But if the probability p 6= 1/2, our new code
shortens typical messages. The insight here is that we don’t need a codeword for
every message, just typical ones, since the probability of atypical messages is
negligible!

1.7.2 Information, conditional entropy, and mutual information

The Shannon entropy is a way of quantifying our ignorance (per letter) about the output of a
source operating with X: if the source sends an n-character message, we need about nH(X)
bits to know the message. Information quantifies how much knowledge you gain by knowing
the probability distribution the characters came from, i.e., “if you know the {pi}, how many
fewer bits do I need to transmit to tell you the source’s (typical) message?”. Well, the total
reduction in the number of bits for a n length message from the alphabet of k characters is

n log2 k − (−n
∑
i

pi log2 pi) = n

(
log2 k +

∑
i

pi log2 pi

)
. (1.74)

Given a knowledge of the pi, we define the information per bit as

I(X) = log2 k +
∑
i

pi log2 pi, (1.75)

so that information and entropy are the same (up to signs and constants).

information and entropy of the uniform distribution As a quick example,
suppose we have a uniform distribution of k characters, pi = 1/k. Well:

S = k

(
1

k
log2

1

k

)
= log2

1

k
(1.76)

I = log2 k + log2

1

k
= 0. (1.77)
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So, the entropy is the log of the number of equal-probability characters (sound
familiar from the microcanonical ensemble?), and there is no information in the
distribution.

information and entropy of a delta function distribution The oppo-
site extreme is also trivial to work out. Suppose the distribution is such that a
particular event definitely happens: pi = δα,i. Well:

S = 0 (1.78)

I = log2 k. (1.79)

By knowing the distribution you already know everything about the outcome of
an n-length message, and the entropy (a quantification of ignorance) is zero.

Finally, suppose we have two correlated sources of information, X and Y (for uncorrelated
sources we would have p(x, y) = pX(x)pY (y)). Then, if I read a message in Y n I can further
reduce my ignorance about a message generated by Xn (if I know the correlations!), which
means I should be able to further compress messages in Xn than I could without access to
Y . This is captured by the conditional entropy,

H(X|Y ) = H(XY )−H(Y ) = 〈− log(p(x, y) + log p(y)〉 = 〈− log p(x|y)〉 , (1.80)

where we see the conditional probability distribution introduced earlier in this chapter. Un-
surprisingly (given the connection between information and entropy above), the mutual in-
formation is closely connected: The information about X gained when you learn about Y
(again, “the number of fewer bits per letter needed to specify X when Y is known) is

I(X;Y ) = H(X)−H(X|Y )

= H(X) +H(Y )−H(XY ) (1.81)

= H(Y )−H(Y |X),

which is a quantification of the degree to which X and Y are correlated, and is symmetric
under the interchange of X and Y as we see above.

1.7.3 Unbiased estimation of probabilities

We can now use the entropy as a way to quantify subjective estimates/assignments of prob-
abilities! To start, if we have no information, the unbiased estimate is that every outcome
is equally likely. Indeed, we saw above that the uniform distribution encodes no information
and maximizes the entropy. Given additional information, we obtain the unbiased estimate
by maximizing entropy subject to the constraints.

To give an example, suppose we observe a random variable for a while and observe
that it has a specific mean value, 〈F (x)〉 = f . We want make an unbiased estimate of the
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probabilities pi, and we will use Lagrange multipliers (α, β) to impose the two constraints
we now know about the probability distribution (that it is normalized and has a specific
mean):

S ({pi}, α, β) = −
∑
i

pi ln pi − α

(∑
i

pi − 1

)
− β

(∑
i

piF (xi)− f

)
. (1.82)

Maximizing this with respect to the pi:

0 = dS
dpi

= − ln pi − 1− α− βF (xi) (1.83)

⇒ pi = e−(1+α)e−βF (xi). (1.84)

Given this form (which should remind you of Boltzmann weights!), we can then solve for α
and β that satisfy the given constraints.
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Chapter 2

Kinetic Theory: from Liouville to the
H-theorem

Perspective and questions for this chapter

At the beginning of class we talked about thermodynamics as a phenomenological theory
built on encoding “black-box” observations of material systems into the laws of thermody-
namics. But, as emphasized at the time, “We know what’s inside of the box! It’s molecules
interacting with each other (via either classical or quantum mechanics, as the scale of the
problem demands)!” So, we should be able to derive the structure of thermodynamics from
what we already know about equations of motion and the probability theory we learned in
Chapter 2.

In this section we will explore the classical mechanics of a dilute gas. Major questions we
want to think about (ref Fig. 2.1):

1. How do we even define the idea of “equilibrium” for a system made out of particles?

2. Do such systems evolve towards equilibrium? How could they?! Every microscopic
equation we want to write down is time reversible, but if a system evolves from a
non-equilibrium to an equilibrium state it is picking out a direction of time.

Figure 2.1: An ideal gas rushes to fill the available space after a partition is
removed The gas is composed of microscopic degrees of freedom evolving according to
completely time-reversible dynamics, but “Entropy increases.” What is entropy and how is
it time irreversible for such a process?
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Sources for this chapter: The material here will cover most of Pathria, Chapter 2;
thanks to the work we did in the lectures on Probability we will also either implicitly or
explicitly cover Pathria Chapter 3.1 - 3.3. We will also be covering the BBGKY hierarchy
and Boltzmann’s H-theorem, which are not in Pathria.

2.1 Elements of ensemble theory

2.1.1 Phase space of a classical system1

We want to connect a thermodynamic description of a system – which is captured by only
a handful of coordinates, like V,N, T, etc. – with a classical microstate, which is specified
by the positions and momenta of each of my N particles: µ = {q1,p1, . . . , qN ,pN}, which is
a point in a 6N -dimensional phase space (and which is, hence, hard to draw). Since we’re
starting with a classical mechanical description, we’ll say the system is governed by some
Hamiltonian, H, so that the equations of motions we’ll work with are{

dpi
dt

= − ∂H
∂qi

= ṗi
dqi
dt

= ∂H
∂pi

= q̇i,
(2.1)

and where time-reversal invariance means that if we reverse the direction of time we transform
p→ −p and q(t)→ q(−t).

Now, given that there are a handful of thermodynamic coordinates describing the system
and ∼ 1023 describing the classical microstate, it will not surprise us that there is a many-
to-one mapping between equilibrium states and microstates. How do we formalize this?
Let’s start by imagining we have N “copies” of the same macrostate of our system, each
corresponding to a different representative microstate, and we’ll think about the ensemble
density function,

ρ(p, q, t) = lim
N→∞,dΓ→0

dN (p, q, t)

NdΓ
, (2.2)

where

dΓ =
N∏
i=1

d3pid
3qi

is how we’ll be writing classical phase space volume differentials and dN is the number of
microstates corresponding to the target macrostate in our differential box. Note that if we
integrate ρ over all of phase space we get∫

dΓρ(p, q) =

∫
dN
N

= 1, (2.3)

so we see that between positivity (we’re counting numbers of points, so it’s not negative)
and the above, the ensemble density is actually a probability density function. We already
know things, then, like computing expectation values:

〈A〉 =

∫
dΓρ(p, q, t)A(p, q)

1This section covers Pathria 2.1
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.
Note that we’ve been writing time dependences in the above, but for equilibrium macrostates

we believe that ensemble averages shouldn’t depend on time. Microscopically, though, we
know that if we take snapshots of the state of our system the microstates at time t and
t + ∆t will look measurably different. Thus, in equilibrium we will look for stationary en-
semble densities, for which

∂ρ

∂t
= 0. (2.4)

2.1.2 Liouville’s theorem and its consequences2

Incompressibility of phase space volumes

Liouville’s theorem, which I’m sure you encountered in classical mechanics, is a characteriza-
tion of the evolution of ρ with time, and states that ρ behaves like an imcompressible fluid.
So, first, how does the phase space density evolve? Let’s look at Fig. 2.2, which shows two
dimensions of phase space around some representative point pα, qα, as well as where those
points have moved after a short time dt.

Figure 2.2: Evolution of phase space volumes

First, note that the representative point itself flows like{
q′α = qα + q̇αdt+O(dt2)
p′α = pα + ṗαdt+O(dt2),

(2.5)

and the nearby points in phase space also flow:{
dq′α = dqα + ∂q̇α

∂qα
dqαdt+ · · ·

dp′α = dpα + ∂ṗα
∂pα

dpαdt+ · · · , (2.6)

so for each pair of conjugate coordinates we see that

dq′αdp
′
α = dqαdpα

[
1 + dt(

∂q̇α
∂qα

+
∂ṗα
∂qα

) +O(dt2)

]
= dqαdpα, (2.7)

2This section covers Pathria 2.2, but done slightly differently
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where the last equality holds because the term proportional to dt vanishes by equality of
mixed partials. This is the just the familiar statement that Hamiltonian dynamics preserves
phase space volumes: dΓ = dΓ′.

Liouville’s theorem

The above has consequences for our ensemble density. All of the states dN that were orig-
inally near (p, q) move to the neighborhood of (p′, q′), but occupy the same phase space
volume. Thus, dN /dΓ is unchanged, and ρ itself behaves like an incompressible fluid.Given
how phase space transforms, we can write

ρ(p, q, t) = ρ(p′, q′, t+ dt). (2.8)

Expanding out this expression, we can write

ρ(p, q, t) = ρ (p+ ṗdt, q + q̇dt, t+ dt) (2.9)

= ρ(p, q, t) +

[∑
α

ṗα
∂ρ

∂pα
+ q̇α

∂ρ

∂qα
+
∂ρ

∂t

]
dt+O(dt2). (2.10)

Let’s define the total derivative (or “streamline derivative”) of a function f as

d

dt
f(p, q, t) =

∂f

∂t
+
∑
α

∂f

∂pα
ṗα +

∂f

∂qα
q̇α, (2.11)

where the interpretation is that d/dt is the derivative as you flow (following the evolution of
the volume of fluid as it moves through phase space), whereas the partial derivative ∂/∂t is
like sitting a fixed position in space and watching the changes in f in time at that location.
Anyway, the equation for ρ says that

dρ

dt
= 0 =

∂ρ

∂t
+
∑
α

(
−∂H
∂qα

)
∂ρ

∂pα
+

(
∂H
∂pα

)
∂ρ

∂qα
(2.12)

⇒ ∂ρ

∂t
= {H, ρ}, (2.13)

where we have defined the Poisson bracket3

{A,B} =
∑
i

∂A

∂qi

∂B

∂pi
− ∂A

∂pi

∂B

∂qi
(2.14)

2.1.3 Equilibrium ensemble densities

We can combine Liouville’s theorem above with our criteria that in equilibrium ρ is stationary
to come up with a criteria for equilibrium:

∂ρeq(q,p)

∂t
= 0 = {H, ρeq}. (2.15)

3Using curly braces, not the weird straight bracket of Pathria. Shots fired. I am going to use Pathria’s /
Goldstein’s sign convention here, though, instead of Landau’s.

45



In principle, we now have to solve the system of 6N variables coming from setting the Poisson
bracket to zero. In practice, we’ll guess! We have already required that in equilibrium ρ has
no explicit time derivative; we could also assume it has no dependence on q or p at all:
ρeq = const. is certainly a valid solution of the above (which is like saying the ensemble
of systems corresponding to the equilibrium macrostate are uniformly distributed through
phase space).

More generally, though allow implicit dependencies on the phase space coordinates and
let ρ be an arbitrary function of H:

{ρeq(H),H} =
∑
i

(
∂ρ

∂H
∂H
∂qi

)
∂H
∂pi
−
(
∂ρ

∂H
∂H
∂pi

)
∂H
∂qi

= 0. (2.16)

For example, choosing
ρ(H) = δ(H− E)

gives us the microcanonical ensemble, and choosing

ρ(H) ∝ exp(−βH(q,p))

gives us the canonical ensemble.
Even more generally, while we’re in the business of simply guessing solutions to Eq. 2.15,

we can assume that ρ is an arbitrary function of bothH itself and of any conserved quantities.
To see why, we first note that if some quantity A is conserved under the Hamiltonian,
{A,H} = 0. Then, using the same manipulations as above, we can write

{ρeq(H, A),H} =
∂ρ

∂H
{H,H}+

∂ρ

∂A
{A,H} = 0, (2.17)

satisfying our condition for ρeq to be an equilibrium distribution.

Time dependence of observables

It is perhaps worth explicitly pointing out that to find the time dependence of some ensemble
average of a quantity A, we do:

d

dt
〈A〉 =

∫
dΓ
∂ρ(p, q, t)

∂t
A(p, q) (2.18)

=
3N∑
i=1

∫
dΓA(p, q){H, ρ}, (2.19)

where the key note is that you cannot just bring the total time derivative inside the integral
sign. One can then write out the Poisson bracket and change the partial derivatives acting on
ρ by integration by parts Make sure we’re all okay with this! If you’re reading this, actually
do the manipulations to go from the above to the below. This leads to:

d

dt
〈A〉 =

3N∑
i=1

∫
dΓρ

[(
∂A

∂pi

∂H
∂qi
− ∂A

∂qi

∂H
∂pi

)
+ A

(
∂2H
∂pi∂qi

− ∂2H
∂qi∂pi

)]
(2.20)

= −
∫
dΓρ{H, A} = 〈{A,H}〉 (2.21)
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2.2 BBGKY4 hierarchy

Starting comments

We are about to embark on a sequence of formal manipulations, so it is worth emphasizing
where we are going today (and why). In the last lecture we addressed the first question posed
at the start of the chapter – “How do we define the idea of equilibrium for a system described
microscopically as a collection of particles?” – by thinking about stationary ensemble density
functions.

Departing from the sequence in Pathria, the rest of the chapter will be devoted to the
second question: if we start from a non-equilibrium density, can we show it evolves towards
equilibrium (a la Fig. 2.1 – an experiment which we know reproducibly leads from one
equilibrium state to another)? Where does time irreversibility come from?

We have already seen “entropy” defined in two seemingly very different ways: entropy as
a thermodynamic state function somehow related to heat and temperature, and entropy in
the information theoretic sense as a quantification of our ignorance about the output of a
probabilistic source. By the end of the chapter we will see yet another version of entropy:
the Boltzmann version of entropy, capturing information about one-particle densities.

BBGKY

In the last lecture we encountered the ensemble density, ρ(p1, . . . ,pN , . . . , qN , t), but in
general this contains far more microscopic information than we would ever need to compute
or describe equilibrium properties (for instance – knowledge of the typical behavior of just
a single particle would be sufficient to calculate the pressure of a gas. Let’s define the one-
particle density as the expectation value of finding any of the N particles at some particular
location with some particular momentum:

f1(p, q, t) =

〈
N∑
i=1

δ3(p− pi)δ3(q − qi)

〉
= N

∫ N∏
i=2

dViρ(p1 = p, q1 = q,p2, . . . ,pN , qN),

(2.22)
where dVi = d3pid

3qi. The general s-particle density is defined similarly, integrating over the
s+ 1 through Nth variables:

fs(p1, . . . , qs, t) =
N !

(N − s)!
ρs(p1, . . . , qs, t), (2.23)

4Bogoliubov-Born-Green-Kirkwood-Yvon. Some aspects introduced by Yvon in 1935; hierarchy written
out by Bogoliubov in 1945, Kirkwood did kinetic transport work in 1945/1946; and Born and Green used
an analogous structure for the kinetic theory of liquids in 1946
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where

ρs(p1, . . . , qs, t) =

∫ N∏
i=s+1

dVi(p1, . . . , qN , t) (2.24)

is just the unconditional pdfs for the coordinates of s of the particles. These fs functions
differ from the unconditional pdfs by a simple normalization factor, and we’ll see why each
is vaguely preferable in different situations.

Now, this is a lovely set of definitions. What we really want is a way of expressing the time
evolution of these s-particle densities (e.g., if we can tell the pressure from f1, then knowing
f1(t) will let us study how pressure equilibrates in time as we go from one equilibrium state
to the other;again, c.f. Fig. 2.1). Well,

∂fs
∂t

=
N !

(N − s)!

∫ N∏
i=s+1

dVi
∂ρ

∂t
=

N !

(N − s)!

∫ N∏
i=s+1

dVi{H, ρ}. (2.25)

It would be quite difficult to make any interesting headway here for a truly arbitrary Hamil-
tonian, so let’s consider the case of up to two-body interactions:

H =
N∑
i=1

[
p2
i

2m
+ U(qi)

]
+

1

2

N∑
i,j=1

V (qi − qj), (2.26)

where U is some external potential and V is some pairwise inter-particle potential. What’s
our strategy going to be? Well, we have to integrate over a Poisson bracket, so integration
by parts will be extremely useful whenever we’re taking a derivative with respect to one of
the variables we’re integrating over. Because of this, let’s partition the sums into dummy
variables running over the first s particle coordinates, running over the last N − s, and cross
terms:

H = Hs +HN−s +Hx (2.27)

Hs =
s∑
i=1

[
p2
i

2m
+ U(qi)

]
+

1

2

s∑
i,j=1

V (qi − qj) (2.28)

HN−s =
N∑

i=s+1

[
p2
i

2m
+ U(qi)

]
+

1

2

N∑
i,j=s+1

V (qi − qj) (2.29)

Hx =
s∑
i=1

N∑
j=s+1

V (qi − qj). (2.30)

This lets us write
∂ρs
∂t

=

∫ N∏
i=s+1

dVi{Hs +HN−s +Hx, ρ}, (2.31)

and we’ll take each part of the Poisson bracket in turn.
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Self term, Hs Notice that the variables we are integrating over do not show up in ρs or
Hs, so we can interchange the order of integrations and differentiations and write∫ N∏

i=s+1

dVi{Hs, ρ} = {Hs,

(∫ N∏
i=s+1

dViρ

)
} = {Hs, ρs}. (2.32)

This has a natural interpretation / connection to what we already know: if there are only s
particles, we have just re-written the Liouville equation.

Just the non-s particle terms, HN−s We will handle all of these terms via integration
by parts: ∫ N∏

i=s+1

dVi

N∑
j=1

(
∂ρ

∂pj
· ∂HN−s

∂qj
− ∂ρ

∂qj
· ∂HN−s

∂pj

)
(2.33)

= [surface terms] +

∫ N∏
i=s+1

dViρ

(
∂2HN−s

∂pi∂qi
− ∂2HN−s

∂qi∂pi

)
= 0. (2.34)

Cross terms, Hx Apparently if there is going to be anything interesting it will come from
these cross terms. We’re making progress, here:∫ N∏

i=s+1

dVi

N∑
j=1

[
∂ρ

∂pj
· ∂Hx

∂qj
− ∂ρ

∂qj
· ∂Hx

∂pj

]
(2.35)

=

∫ N∏
i=s+1

dVi

([
s∑

k=1

∂ρ

∂pk
·

N∑
j=s+1

∂V (qk − qj)
∂qk

]
+

[
N∑

j=s+1

∂ρ

∂pj
·

s∑
k=1

∂V (qj − qk)
∂qk

])
(2.36)

=
s∑

k=1

∫ N∏
i=s+1

dVi
∂ρ

∂pk
·

N∑
j=s+1

∂V (qk − qj)
∂qk

(2.37)

where in the first step we have used the fact that Hx is independent of any pi, and in the
second step yet another integration by parts shows that the second term above vanishes.
Physically, we expect that we can treat all of the j = s+ 1, . . . , N particles equivalently, so
we change the labels of our sums and replace the sum by (N − s) equivalent integrations:∫ N∏

i=s+1

dVi{Hx, ρ} = (N − s)
s∑
i=1

∫
dVs+1

∂V (qi − qs+1)

∂qi
· ∂
∂pi

(∫ N∏
s+2

dViρ

)
. (2.38)

Notice that the final term in parentheses, above, is just ρs+1. This, at last, is the key con-
nection we wanted to make.

Combining everything: the hierarchy Using either ρs or fs, we have a connection
between different s-body densities:

∂fs
∂t
− {Hs, fs} =

s∑
i=1

∫
dVs+1

∂V (qi − qs+1)

∂qi
· ∂fs+1

∂pi
. (2.39)
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This, at last, is the BBGKY Hierarchy! But why have we gone through the trouble?? We
now have a hierarchy of relations: the 1-body density is given by a self-term plus a sum over
2-body terms, the 2-body density is given by a self-term plus a sum over 3-body terms, and
so on... You may think to yourself, “Great – we’ve replaced a very complicated function of
O(1023) variables with set of O(1023) coupled equations... what a day!” But this is actually
quite useful – the hierarchy has isolated the simplest variables, e.g. f1, which are often the
most physically important. Then, given a particular problem we want to solve, we can inject
physical approximations to decide what terms in the hierarchy can be truncated, simplified,
etc., as we are about to see.

2.3 The Boltzmann Equation – intuitive version5

Figure 2.3: “Eleganz sei die Sache der Schuster und Schneider” is apparently a thing
Boltzmann said. Does that inspire excitement for this section?

Going from the BBGKY hierarchy to the Boltzmann equation is fussy (cf. the quote in
Fig. 2.3), and so we begin with a hand-wavy derivation in which we basically just guess the
right answer first to provide some intuition. Let’s write the first level of the hierarchy as

∂f1

∂t
= {H1, f1}+

(
∂f1

∂t

)
coll

, (2.40)

where we know the thing we’ve labeled “coll” above,(
∂f1

∂t

)
coll

=

∫
dV2

∂Φ12

∂q1

· ∂

∂p1

f2, (2.41)

5This section follows in part the treatment in David Tong’s notes, available here, from his course on
Kinetic Theory, and in part the treatment in Kardar’s Statistical Physics of Particles.
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represents the way single particles change their momenta by collisions with a second particle.
Well, let’s assume that collisions are local, so a particle at q with momentum p collides with
a second particle also at q but with momentum p2; after this collision the particles have
new momenta p′1 and p′2, respectively. If we use the scattering function ω(p,p2|p′1,p′2) to
keep track of the information about the dynamics of the collision process (we’ll get into
more detail later, but in general this is something you can just compute given the pairwise
potential V (q)), we can write the rate at which the collision process happens as

rate = ω(p,p2|p′1,p′2)f2(q1 = q, q2 = q,p1 = p,p2, t)d
3p2d

3p′1d
3p′2. (2.42)

That is, the rate is proportional to the details of the scattering process times f2, which itself
gives us the probability of of having particles with (q,p) and (q,p2) in the first place. Note
that when using this in Eq. 2.41 we need to consider both scattering out of the state where
the particle has momentum p but also into the state with momentum p. This suggests a
collision integral with two terms:(
∂f1

∂t

)
coll

=

∫
d3p2d

3p′1d
3p′2 [ω(p′1,p

′
2|p,p2)f2(q, q,p′1,p

′
2)− ω(p,p2|p′1,p′2)f2(q, q,p,p2)] .

(2.43)
Let’s put some generic constraints on the scattering function (without knowing much

about the details of the interparticle interactions). Of course it should only by nonzero if
momentum and energy are conserved, and first we assume that any external potential only
varies on scales much larger than the interaction range relevant to the collisions. So, ω is
only nonzero if

p+ p2 = p′1 + p′2, p2 + p2
2 = p′21 + p′22 .

We want to say that the scattering rate is unchanged if you simple exchange the ingoing and
the outgoing momenta (and that it also doesn’t depend on where the collisions take place),
so that:

ω(p,p2|p′1,p′2) = ω(p′1,p
′
2|p,p2).

We can use this to simplify the collision integral:(
∂f1

∂t

)
coll

=

∫
d3p2d

3p′1d
3p′2ω(p′1,p

′
2|p,p2) [f2(q, q,p′1,p

′
2)− f2(q, q,p,p2)] . (2.44)

To finish the “derivation” of the Boltzmann equation and write a closed equation for f1,
we make a final, big approximation (“the assumption of molecular chaos”) that momenta of
the two particles are uncorrelated:

f2(q, q,p,p2) = f1(q,p)f1(q,p2). (2.45)

This, perhaps, doesn’t look so strong an assumption on its surface, but looking at how f2

enters the rate of collision expressions we’ve written down, we see that we are more explicitly
assuming that the momenta are uncorrelated before the collision, and then after the collision
the momenta follow from conservation properties during the scattering process. This has,
quite sneakily, been a means to smuggle in an arrow of time. We will see the implications
when we get to the H-theorem later in the chapter.
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For now, let’s just finish putting the pieces together by writing the Boltzmann equation
itself:

∂f1

∂t
− {H1, f1} =

∫
d3p2d

3p′1d
3p′2ω(p′1,p

′
2|p,p2) [f1(q,p′1)f1(q,p′2)− f1(q,p)f1(q,p2)]

(2.46)
Shoemakers and tailors, indeed. The Boltzmann equation combines derivatives and integrals
and nonlinearity all at the same time, and exact solutions to it are not so easy to come by.
But in this framework we can show that systems do reach equilibrium if they start out of
it, and we didn’t have to add friction or some other means of dissipating energy; we just
had to innocuously assume that momenta are uncorrelated before collisions. Let first do a
somewhat more formal derivation, making use of the hierarchy we sketched out earlier.

2.4 Boltzmann a la BBGKY

Now that we know where we are heading, let’s derive the Boltzmann equation with a bit more
rigor. After having done so, we’ll ask ourselves about the consequences of the Boltzmann
equation. What do its solutions tell us about the behavior of equilibrium states? What does
it say about the origin of irreverisbility?

2.4.1 BBGKY for a dilute gas

You may have noticed that so far we have not used the fact that we are studying a dilute gas
– that is about to change as we are finally in a position to make some physically motivated
approximations to the BBGKY hierarchy. Let’s start by explicitly writing the first two levels
of the hierarchy, where for notational ease we’ll write the derivative of the pairwise potential
as a force:

∂V (qi−qj)
∂qi

=
∂Φij
∂qi

, which is the contribution to the force on i from j. Our first two
levels are: [

∂

∂t
− ∂U

∂q1

· ∂

∂p1

+
p1

m
· ∂

∂q1

]
f1 =

∫
dV2

∂Φ12

∂q1

· ∂

∂p1

f2, (2.47)

[
∂

∂t
− ∂U

∂q1

· ∂

∂p1

− ∂U

∂q2

· ∂

∂p2

+
p1

m
· ∂

∂q1

+
p2

m
· ∂

∂q2

− ∂Φ12

∂q1

·
(

∂

∂p1

− ∂

∂p2

)]
f2 =∫

dV3

[
∂Φ13

∂q1

· ∂

∂p1

+
∂Φ23

∂q2

· ∂

∂p2

]
f3. (2.48)

Relative importance of terms

Would you like to write/TEX the next level? Neither would I. Let’s think physically about
the terms in the above two levels: We’ve arranged things so that every term in the square
brackets has dimensions of inverse time, so lets estimate the typical magnitudes of the various
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terms! We’re studying a gas, and a reasonable speed for a gas particle at room temperature
is on the order of c = 100m/s; to make a characteristic time, the typical length scale will
depend on the nature of the term in question.

1. First, there is a characteristic time related to the external potential, like τ−1
U ∼ ∂U

∂q
· ∂
∂p

:
these are spatial variations in the external potential, which we will typically think of
taking place over basically macroscopic distances, where the characteristic length L is
at least a millimeter. Very roughly, that would give us:

τU ∼ L/v ∼ 10−5s

2. Next there are terms that scale like a typical collision duration, like τ−1
c ∼ ∂Φ

∂q
· ∂
∂p

; that
is, these terms have a magnitude which should be commensurate with the duration
over which two particles are within a characteristic effective range of the potential, d.
If we restrict ourselves to reasonably short-range interaction potentials (van der Waals,
or, say, Lennard-Jones interactions), this effective distance is on the scale of angstroms,
d ∼ 10−10m. Very roughly, that would give us:

τc ∼ d/v ∼ 10−12s

3. Finally, there are collisional terms like

τ−1
x ∼

∫
dV

∂Φ

∂q
· ∂
∂p
N
ρs+1

ρs

The integral has some non-zero contribution over a volume that scales like the char-
acteristic volume of the potential, d3, and the ratio Nρs+1/ρs is like a probability of
finding an additional particle in the vicinity of the s particles, which should be of the
order of the particle number density, n = N/V ∼ 1026m−3. Combining this and the
above gives, very roughly:

τx ∼
τc
nd3
∼ 1

nvd2
∼ 10−8s

What does all of this buy us? Well, we see that the second level (and all higher-s levels) of
the hierarchy is balance between three competing terms: something like τ−1

U , something like
τ−1
c , and something like τ−1

x . Well, as long as we are in the dilute limit, we see that the terms
on the RHS of Eq. 2.48 are orders of magnitude smaller than the terms on the LHS, and so
we approximate these levels of the hierarchy just by the balance of terms that are like τ−1

U

and τ−1
c .

In contrast, the first level is different. It has no terms that are like τ−1
c , and so we have

no choice but to keep all of the terms.

Basic closure

This illustrates a common strategy in kinetic (and other) theories...at first glance the hier-
archy does not seem helpful, because it is not closed (i.e., to solve for ρs one needs to know
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ρs+1). However, we can try to come up with a model/theory/approximation that governs the
higher-order levels of the hierarchy; the quality of our predictions will then be related to the
quality of our closure of the theory. In the present case, explicitly, we have[

∂

∂t
− ∂U

∂q1

· ∂

∂p1

+
p1

m
· ∂

∂q1

]
f1 =

∫
dV2

∂Φ12

∂q1

· ∂

∂p1

f2, (2.49)

[
∂

∂t
− ∂U

∂q1

· ∂

∂p1

− ∂U

∂q2

· ∂

∂p2

+
p1

m
· ∂

∂q1

+
p2

m
· ∂

∂q2

− ∂Φ12

∂q1

·
(

∂

∂p1

− ∂

∂p2

)]
f2 = 0.

(2.50)
You may wonder if this closure is sufficient to break the time-reversal symmetry of the
underlying equations of motion. It is not! At this stage we have the collisions which will
in principle allow us to relax to equilibrium, but everything is still time-reversible. So we
proceed with a sequence of physically motivated approximations...

Continued simplifications

Let’s focus on the evolution of the two-body term. In particular, we expect that most of the
changes we are interested in are those that are due to the changes wrought by collisions,
rather than the slower changes of evolutions under the effect of the external potential. So,
Eqs. 2.49,2.50 we will ignore the terms related to ∂U

∂q
. Additionally, we see that in Eq. 2.50

the collision term depends not on absolute positions but on relative positions (which makes
sense! they’re collisions!), so let’s switch coordinates to the center of mass, relative position
frame (and similarly for momenta):

R =
1

2
(q1 + q2), r = (q1 − q2),P = (p1 + p2),p =

1

2
(p1 − p2).

We now have a distribution function f2(R, r,P ,p, t), where the distribution function de-
pends on the center of mass variables, R,P “slowly”, and has a much faster dependence on
the the relative coordinates r,p which vary over the small distance d and the time scale τc.

Since the relative distributions in f2 vary so quickly, we assume that in a since f2 reaches
equilibrium and then enters the dynamics of f1. That is, we focus in on time intervals that
are long compared to τc (but perhaps short compared to τU), to get the “steady state”
behavior of f2 at small relative distances that are relevant to the collision term. Combining
the approximations in the above paragraph, we have(

p

m
· ∂
∂r
− ∂Φ(r)

∂r
· ∂
∂p

)
f2 ≈ 0. (2.51)

This is the right form to allow us to start massaging the collision term in the RHS of the
equation for f1:(

∂f1

∂t

)
coll

=

∫
dV2

∂Φ12

∂q1

· ∂

∂p1

f2 =

∫
dV2

∂Φ(r)

∂r
·
[
∂

∂p1

− ∂

∂p2

]
f2

=
1

m

∫
|r|≤d

dV2(p1 − p2) · ∂f2

∂r
. (2.52)
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In the first equality (where we put in an extra ∂
∂p2

, we’re just noting that if we integrate by

parts that term vanishes (we’ve added a derivative of something we’re integrating over...),
and in the next line we’re plugging in the results of Eq. 2.51.

Scattering theory6

This part is not crucial to our conceptual discussion, but it is what allows us to massage
the above expression into the Boltzmann equation form. Let’s think more about classical
two-particle collisions, which begin with momenta pi = mvi and end with momenta p′i =
mv′i. We proceed to transform into the rest from of the first particle, so that it is being
bombarded with oncoming particles that have velocity v2−v1, and these oncoming particles
are uniformly distributed over the plan normal to that oncoming velocity. We define several
relevant quantities in Fig. 2.4. Geometrically, we see that the solid angles are dσ = b dbdφ

Figure 2.4: Differential cross section for a scattering process b is the impact param-
eter, i.e. the distance from the asymptotic trajectory to the central line, which denotes a
head-on collision with the particle (shown as a blue disk here); b and the polar angle φ to-
gether parameterize the plane normal to the incoming particle. The scattering angle θ is the
angle by which the incoming particle is deflected. The solid angles dσ and dΩ are illustrated,
with relations between them in the text.

and dΩ = sin θ dθdφ. The number of particles scattered into dΩ per unit time is related
to the flux of particles hitting the plane and the other solid angle, Idθ, typically written
I dσ
dΩ
dΩ = Ibdbdφ, where the differential cross section is∣∣∣∣ dσdΩ

∣∣∣∣ =
b

sin θ

∣∣∣∣dbdθ
∣∣∣∣ =

1

2

∣∣∣∣ d(b2)

d cos θ

∣∣∣∣ .
What we are really saying here is that for a fixed relative incoming velocity there is a par-
ticular relationship between the impact parameter, b, and the scattering angle, θ, and this
is something you can figure out for any particular classical pair potential Φ.

6very closely following Tong’s notes
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If we compare these types of scattering expressions to what we had in the “intuitive” ver-
sion’s expressions Eq. 2.42, we see that when we talked about the rate of scattering into
some small area of momentum space we can express this in terms of the differential cross
section:

ω(p,p2,p
′
1,p

′
2)d3p′1d

3p′2 = |v1 − v2|
∣∣∣∣ dσdΩ

∣∣∣∣ dΩ

.

Great. Let’s go back to our collision integral:(
∂f1

∂t

)
coll

=
1

m

∫
|r|≤d

dV2(p1 − p2) · ∂f2

∂r
. (2.53)

Let’s transform to the coordinate system illustrated in Fig. 2.5: the direction parallel to the
relative velocity is parameterized by x, we have our interaction range of the potential d, and
the plane normal to the relative velocity is still parameterized by φ and b. Using all of the

Figure 2.5: Coordinate system for two-particle collision

above we can write(
∂f1

∂t

)
coll

=

∫
d3p2|v1 − v2|

∫
dφdb b

∫ x2

x1

∂f2

∂x

=

∫
d3p2d

3p′1d
3p′2ω(p′1,p

′
2,p,p2) [f2(x2)− f2(x1)] . (2.54)

Getting to Boltzmann

Working out the classical scattering theory to massage the collision term into the form of Eq.
2.54, all that’s left is to decide on the same simplifications for f2 itself. We once again invoke
the assumption of molecular chaos to say that the particles are uncorrelated just before the
collision, and we imagine coarse graining over space (on the scale of d) so that we evaluate
f2(x1) and f2(x2) at the same location, q. We once again arrive at Eq. 2.46,

∂f1

∂t
− {H1, f1} =

∫
d3p2d

3p′1d
3p′2 ω(p′1,p

′
2|p,p2) [f1(q,p′1)f1(q,p′2)− f1(q,p)f1(q,p2)] .

(2.55)
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2.5 The H-Theorem

We are finally ready to begin addressing the second question we asked at the very beginning of
the chapter. We have been dancing around the question of how is it that thermodynamics tells
us that systems will eventually settle into equilibrium states – which involves an arrow of time
that distinguishes past from future – even though the equations of motion are fundamentally
invariant under the reversal of time. Specifically, we’ll first show that within the framework of
the Boltzmann equation, entropy does indeed increase7 and systems do indeed equilibrate8.

So what is the H-Theorem, exactly? Let’s define a (possibly) time-dependent quantity,
H(t), defined by

H(t) =

∫
d3qd3p f1(q,p, t) log (f1(q,p, t)) . (2.56)

Had we not already progressed through Chapters 1 and 2 this might seem like a somewhat
strange-looking function, but we instantly recognize the form. f1 is (possibly up to a factor of
normalization) a probability density function, and we recognize H as something like 〈log f1〉,
which is intimately related to the Shannon entropy associated with the probability function
(or, from the sign convention, really the information content).

H-Theorem: If f1 satisfies the Boltzmann equation, then

dH

dt
≤ 0, (2.57)

where we have added the frame around the equation because it is a microscopic statement
of the increase of entropy with time!

Proof:

We take the time derivative in the same way we took the time derivative of ensemble aver-
age quantities earlier in the chapter: H only has a time dependence through explicit time-
dependences:

dH

dt
=

∫
d3qd3p (log f1 + 1)

∂f1

∂t
=

∫
d3qd3p log f1

∂f1

∂t
, (2.58)

where we exploited the fact that
∫
d3rd3pf1 = N is independent of time, so

∫
∂tf1 = 0. Using

the fact that f1 satisfies the Boltzmann equation, we can write the above as

dH

dt
=

∫
d3qd3p log f1

(
∂U

∂q1

· ∂f1

∂p1

− p1

m
· ∂f1

∂q1

+

(
∂f1

∂t

)
coll

)
. (2.59)

Actually, though, the first two terms in the above equation vanish: to see this we integrate
by parts twice, first moving the derivative from f1 onto the log f1 term, and then from the

7this section
8next section
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log f1 term back onto the f1. Thus, in fact, the time evolution of H is entirely governed by
the collision terms:

dH

dt
=

∫
d3qd3p log f1

(
∂f1

∂t

)
coll

=

∫
d3qd3p1d

3p2d
3p′1d

3p′2ω (p′1,p
′
2|p1,p2) log f1(p1) [f1(p′1)f1(p′2)− f1(p1)f1(p2)] .(2.60)

In the above I’m suppressing the q and t arguments, and named the dummy integration
variable p1.

To make progress, we play with the dummy indices. First, let’s relabel 1↔ 2, which only
changes the argument of the log. Adding the resulting (equivalent) expression and averaging
it with the original expression gives a more symmetric expression:

dH

dt
=

1

2

∫
d3qd3p1d

3p2d
3p′1d

3p′2ω (p′1,p
′
2|p1,p2) log [f1(p1)f1(p2)] [f1(p′1)f1(p′2)− f1(p1)f1(p2)] .

(2.61)
We can play the same trick with the incoming and outgoing momenta, swapping p ↔ p′,
while simultaneously making use of the symmetry properties of the scattering processes9.
This gives us

dH

dt
=
−1

2

∫
d3qd3p1d

3p2d
3p′1d

3p′2ω (p′1,p
′
2|p1,p2) log [f1(p′1)f1(p′2)] [f1(p′1)f1(p′2)− f1(p1)f1(p2)] .

(2.62)
Finally, we average the above two numbered equations to get

dH

dt
=
−1

4

∫
d3qd3p1d

3p2d
3p′1d

3p′2ω (p′1,p
′
2|p1,p2)

× [log [f1(p′1)f1(p′2)]− log [f1(p1)f1(p2)]] [f1(p′1)f1(p′2)− f1(p1)f1(p2)] .(2.63)

You may feel like this sequence of manipulations – averaging different versions of the
same expression together to get a symmetric-looking expression – has done us little good,
but we’re actually done! Let’s think about the terms in the integral. First, the scattering rate,
ω, is definitionally a positive quantity. Second, the terms involving f1 have been manipulated
into the form

(log a− log b) (a− b) ,
which, given the positivity of f1, is always a positive number! Thus,

dH

dt
≤ 0 ⇔ dS

dt
≥ 0

A few comments are in order:

1. The arrow of time, again, emerges from the assumption of molecular chaos. If we had
decided that the rate of scattering was proportional to f2 after the collision instead
of before, and still kept f2 ∼ f1f1, we would have found dH

dt
≥ 0, suggesting entropy

decreases as we move into the future. Clearly some real subtleties are in the assumptions
we made!

9
∫
d3p′1d

3p′2ω(p′1, p
′
2|p1, p2) =

∫
d3p′1d

3p′2ω(p1, p2|p′1, p′2)
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2. Note also that the H-theorem permits the time derivative of H to vanish (i.e., it’s not
a strict inequality). We will see (in the homework) that some distributions satisfy a
notion of “local equilibrium” by satisfying a condition of detailed balance, making dH

dt

vanish by satisfying:
f1(p′1)f1(p′2) = f1(p1)f1(p2).

These distributions are not quite in equilibrium, as they do not satisfy the streaming
terms, but they do make the collision terms vanish. These systems have things like
densities, temperatures, drift velocities, etc., varying over space. We’ll see more about
this in the next section.

2.6 Introduction to hydrodynamics10

The equilibrium properties of a macroscopic system are governed by thermodynamics, but we
said at the outset of this chapter that we also care about, e.g., the common situation shown
in Fig. 2.1. What happens if you start we an equilibrium system and perturb it (perhaps
in a large way, as by suddenly and radically expanding the volume available for a gas)?
Hydrodynamics provides a systematic way to think about characteristically long-wavelength,
low-energy excitations of a system. Phenomenologically one can write down hydrodynamic
equations based on the symmetries of a system, but here (in the context of the Boltzmann
equation) we’ll see that you can also explicitly derive hydrodynamic descriptions by starting
with the microscopic dynamics of a system.

To motivate a bit of what follows, let us think about the equilibrium condition in the
context of the Boltzmann equation, which is that dH

dt
= 0. This sets up the following tension,

which we will resolve in this section: One way to satisfy this condition is to satisfy the
constraints of local equilibrium, writing a candidate one-body distribution which takes the
form

f(p, r) = exp

(
−α(r)− β(r)

(p− π(r))2

2m

)
, (2.64)

where α, β, and π are functions of the spatial coordinates. A distribution of this form sets the
time-derivative of H to zero, but it does not satisfy Boltzmann’s equation itself! We saw quite
generically when discussing the Liouville equation that the left hand side of the Boltzmann
equation, even if there is no explicit time dependence, requires the Poisson bracket of the
one-particle distribution and the one-particle Hamiltonian to vanish, {H1, f1} = 0; given the
set of conserved quantities this tells us that in general f1 in global equilibrium should just
be a function of H1:

f(p, r) ∝ exp

(
β

(
p2

2m
+ U(r)

))
. (2.65)

10“Hydrodynamics is what you get if you take thermodynamics and splash it.” – David Tong. Anyway,
there are many references available if you want to go deeper into this subject. The treatment here is kind of
a cross between the treatment in Kardar’s “Statistical physics of fields” and David Tong’s lecture notes on
Kinetic Theory, with a tiny splash of Chapter 5 of Huang’s “Statistical Mechanics”, 2nd edition.
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These, in general, are not the same. The key is that the Boltzmann equation is built on a
separation of time scales that we can physically interpret. At the fastest, collisional time
scale, we approximate f2 ∼ f1f1, where there are correlations in these quantities. On time
scales related to the mean time between collisions, τx, f1 relaxes to a local equilibrium form,
and quantities that are conserved in collisions reach this state of local equilibrium. Finally,
there is a subsequent slow relaxation to the global equilibrium state, governed not by the
collision terms or intergrals over the collision terms, but by the streaming terms on the LHS
of the Boltzmann equation.

2.6.1 Collision-conserved quantities

Let’s think about a function over the single-particle phase space, A(r,p) – this could be
density, or kinetic energy, or... but importantly, we are thinking of quantities that do not
have explicit time-dependences. Now, we want to think about the typical way that A varies
with space, so we will integrate over momentum. This could be motivated by saying it is
more common to experimentally measure spatial dependences than momentum dependences
of the kind of systems we’re studying, but more relevantly I would say the following: When
we started with the Liouville equation there was complete symmetry between p and q, but
in the derivation of the Boltzmann equation we started treating the two inequivalently. To
reflect the fact that p and q are no longer on the same footing, I’ll switch from q to r to
represent position. So, let’s define averages of A as

〈A(r, t)〉 =

∫
d3pA(r,p)f1(r,p, t)∫

d3pf1(r,p, t)
.

Note that the denominator of the above expression is just a local number density of particles,

n(r, t) =

∫
d3pf1(r,p, t), (2.66)

so

〈A(r, t)〉 =
1

n(r, t)

∫
d3pA(r,p)f1(r,p, t) (2.67)

Importantly, the time-dependence of these average quantities only come through the fact
that f1 can evolve in time.

We’re not going to be interested in arbitrary choices of A: ultimately we want to think
about the kind of slowly-varying quantities that are relevant as we are approaching equilib-
rium, and we know from our discussion above that typically terms involved in the collision
integral will vary over a fast time scale. So, we want quantities A that will vanish when
integrated against the collision part of the Boltzmann equation. I.e., we want A’s that have
the property ∫

d3pA(r,p)

(
∂f1

∂t

)
coll

= 0.

We can insert the expression for the collision term and go through precisely the same kind
of manipulations we did in Sec. 2.5 to find that the A’s that have this property obey

A(r,p1) + A(r,p2) = A(r,p′1) + A(r,p′2). (2.68)

That is, they are properties that are conserved in the course of a collision.
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Time evolution of collision-conserved quantities: Before we investigate the particular
A’s of interest, let’s write down the general way that A changes with time if f1 satisfies the
Boltzmann equation. To do this, we start with the Boltzmann equation, which we will from
now on occasionally write as

Lf1 = C[f1, f1], (2.69)

where L = ∂t + pα
m
∂α +Fα∂pα and C[f1, f1] =

(
∂f1
∂t

)
coll

. Let’s multiply by a collision-invariant
A(r,p) and integrate both sides

∫
d3p. The RHS will vanish (by definition of how we’re

choosing the A), leaving us with∫
d3p A(r,p)

(
∂

∂t
+
pα
m
∂α + Fα∂pα

)
f1(r,p, t) = 0, (2.70)

where F is the external force, F = −∇U (and the rest of the notation should be clear...
i.e. with the summation convention p

m
· ∂
∂r

= pα
m
∂α). We can simplify this expression (for

instance by integrating the term involving the external potential by parts) and various simple
manipulations. Making use of how we defined the angle brackets here to be averages over
momenta, we can write the above expression as (suppressing dependencies, and with v =
p/m)

∂

∂t
〈nA〉+

∂

∂r
· 〈nvA〉 − n

〈
v · ∂A

∂r

〉
− n

〈
F · ∂A

∂p

〉
= 0. (2.71)

Specific collision-conserved quantities

Let’s apply this general expression to quantities which we know are conserved in a collision.

Particle number The most trivial thing conserved in a collision between particles is
simply the number of particles !. If we insert the choice A = 1 into Eq. 2.71, we simply get

∂tn+ ∂α(nua) = 0. (2.72)

This result is often written using the particle current, J(r, t) = n(r, t)u(r, t). It is the
continuity equation, expressing the fact that if particle number is conserved, variations in
local particle density are related to particle currents. Note that we have introduced a new
quantity, u = 〈v〉

Momentum Linear functions of the momentum are also conserved during collisions, and
it is convenient to look not at A = p, but rather at the momentum relative to the mean
local velocity we just defined. Choosing A = c ≡ p/m−u and substituting it into Eq. 2.71,
and exploiting the fact that we defined things so that 〈cα〉 = 0, we find

∂tuα + uβ∂βuα =
Fα
m
− 1

mn
∂βPαβ, (2.73)

where the pressure tensor for the fluid is

Pαβ ≡ mn 〈cαcβ〉 . (2.74)

This expression is like a generalized Newton’s law, telling us that the fluid elements experi-
ence accelerations that come both from the external forces and also gradients in the pressure
tensor.
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Kinetic energy Finally, we look at the kinetic energy of the particles as our last collision-
conserved quantity. As before, it is slightly easier to work with the relative kinetic energy,
A = m

2
(v−u)2 = m

2
c2. We substitute this into Eq. 2.71, and go through some simplifications

to find

∂tε+ uα∂αε = − 1

n
∂αhα −

1

n
Pαβuαβ, (2.75)

where I have just introduced the average local kinetic energy :

ε ≡
〈
mc2

2

〉
,

the local heat flux :

hα ≡
nm

2

〈
cαc

2
〉
,

and the strain rate tensor :

uαβ =
1

2
(∂αuβ + ∂βuα) .

Equations 2.72, 2.73, and 2.75 form a set of coupled equations for the time evolution of
the particle density n the local average velocity u, and the local average kinetic energy ε
(which is itself going to be related to the temperature!). But the equations are not closed, as
to calculate those three quantities we would need expressions for the pressure tensor and the
heat flux. We next show how we can build up approximations, using the Boltzmann equation,
to these quantities to finally get a simple, hydrodynamic description of how systems approach
equilibrium.

2.6.2 Zeroth-order hydrodynamics

Let’s make progress by straight-up guessing a functional form for the one-body distribution
function f1. Our logic in making this guess is that we know the collision term will induce
fast relaxations, so if we want a distribution function which only varies slowly, a good place
to start would be with a distribution function that satisfies C[f1, f1] = 0. Let’s take one such
solution which we already met in Eq. 2.64; getting the normalization correct and introducing
a new variable that we’ll suspiciously label T , we’ll take our zeroth-order guess, denoted f 0

1 ,
to be

f 0
1 (p, r, t) =

n(r, t)

(2πmkBT (r, t))3/2
exp

[
−(p−mu(r, t))2

2mkBT (r, t)

]
(2.76)

This Gaussian form is clearly normalized so that, e.g.,
∫
d3pf 0

1 = n, 〈p/m〉0 = u, and

〈cαcβ〉0 = kBT
m
δαβ. This lets us calculate the approximations for the pressure tensor, energy

density, and heat flux:

P 0
αβ = nkBTδαβ, ε =

3

2
kBT, h0 = 0.

The equations we derived by thinking about collision conserved quantities are very simple
in this approximation. Defining the material derivative

Dt ≡ ∂t + uβ∂β
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we get:

Dtn = −n∂αuα
mDtuα = Fα −

1

n
∂α(nkBT )

DtT = −2

3
T∂αuα. (2.77)

The inadequacy of zeroth-order hydrodynamics: Sadly, these very simple equations
do a terrible job of describing the relaxation of a system to equilibrium. Let’s imagine starting
with a system with initial u0 = 0 in the absence of external forces F = 0, and making a
small perturbation:

n(r, t) = n̄+ δn(r, t), T (r, t) = T̄ + δT (r, t). (2.78)

We want to study what happens to these small perturbations, so we expand Eqs. 2.77 to
first order in (δn, δT,u), where we note that to first order the material derivative is just
Dt = ∂t +O(u), so our linearized zeroth order equations become:

∂tδn = −n̄∂αuα

m∂tuα = −kBT̄
n̄

∂αδn− kB∂αδT

∂tδT = −2

3
T̄ ∂αuα. (2.79)

The easiest way to investigate the effect of our perturbations is to take Fourier transforms,

Ã(k, ω) =

∫
d3qdt A(r, t) exp [i(k · r − ωt)] ,

where A is any of (δn, δT,u). This gives us the matrix equation

ω

 δ̃n
ũα
δ̃T

 =

 0 n̄kβ 0
kB T̄
mn̄

δαβkβ 0 kB
m
δαβkβ

0 2
3
T̄ kβ 0

 δ̃n
ũβ
δ̃T

 . (2.80)

This matrix has the following modes: There are two modes describing a transverse shear flow
in a uniform and isothermal gas (n = n̄, T = T̄ ), with the velocity field varying transverse
to its orientation, e.g. u = f(x, t)ŷ, and both have ω = 0. There is another ω = 0 mode
describing a gas with uniform pressure nkBT , where n and T may be spatially varying but
with a constant product. Lastly, there is a mode with variations along the direction of k;
the eigenvector looks like:

vlongitudinal =

 n̄|k|
ω(k)
2
3
T̄ |k|

 , ω(k) = ±
√

5kBT̄

3m
|k|.

Well, shoot. Apparently within this approximation none of our conserved quantities relax
to equilibrium if we apply a little perturbation: shear flow persists forever, sound modes have
undamped oscillations, etc.
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2.6.3 First-order hydrodynamics

Perhaps this should not have surprised us: we picked something that satisfied local equilib-
rium, but it is straightforward to check that Lf 0

1 6= 0. Actually, it’s more straightforward to
show that if n, T, uα satisfy the zeroth-order hydrodynamic equations, then the effect of L
on the log of the zeroth-order approximation for f1 is

L
[
ln f 0

1

]
=

m

kBT

(
cαcβ −

δαβ
3
c2

)
uαβ +

(
mc2

2kBT
− 5

2

)
cα
T
∂αT. (2.81)

Our instinct for moving forward is to note that, although the RHS of the above is not
zero, it depends on gradients of temperature and on the local velocity. In a sense, then, if we
stick to long-wavelength variations in T and u we are “close” to a solution. Thus, we will try
to construct first-order hydrodynamics by adding a little something extra to the distribution:

f 1
1 = f 0

1 + δf1. (2.82)

Relaxation time approximation What happens if we act on f 1
1 with our collision op-

erator?

C[f 1
1 , f

1
1 ] =

∫
d3p2d

3p′1d
3p′2ω(p′1,p

′
2|p1,p2) [f1(p′1)f1(p′2)− f1(p1)f1(p2)] (2.83)

=

∫
d3p2d

3p′1d
3p′2ω(p′1,p

′
2|p1,p2)

[
f 0

1 (p′1)δf1(p′2) + δf1(p′1)f 0
1 (p′2)− f 0

1 (p1)δf1(p2)− δf1(p1)f 0
1 (p2)

]
,

where we have used the fact that f 0
1 vanishes in the collision integral and dropped any terms

of order (δf1)2. We now have a linear function of δf1, albeit a messy one to work with. At
this point there is a proper way to proceed11, and a physically just fine way to proceed,
which has the great virtue of being much easier while still capturing the dissipational piece
that was missing from our zeroth-order description. We simply approximate

C[f 1
1 , f

1
1 ] ≈ −δf1

τx
, (2.84)

which is called the relaxation time approximation or the single collision time approximation
or using the BGK operator 12. With this approximation the Boltzmann equation is

∂f 0
1 + δf1

∂t
− {H1, f

0
1 + δf1} =

−δf1

τx
, (2.85)

but we assume that δf1 � f 0
1 , so we ignore the δf1 on the LHS. We can then explicitly work

out the additional contribution to our improved estimate:

δf1 = −τx
[(

mc2

2kBT
− 5

2

)
c

T
· ∂T
∂r

+
m

kBT

(
cαcβ −

δαβ
3
c2

)
uαβ

]
f 0

1 . (2.86)

11The Chapman-Enskog expansion, doing a careful expansion in δf1
12Bhatnagar-Gross-Krook, 1954
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One can use this improved description to calculate corrections to various quantities. For
example, the first-order estimate of the pressure tensor becomes

P 1
αβ = nkBTδαβ − 2nkBTτx

(
uαβ −

δαβ
3
uγγ

)
, (2.87)

and the heat flux acquires a dependence on spatial gradients in the temperature. These are
important: they say that shear flows get opposed by off-diagonal terms in the pressure tensor,
and that spatial variations in temperature generate heat flows that in turn smooth out those
variations! These are the sorts of effects that cause the relaxation to equilibrium.

In case you’re curious, if I’ve TEX’ed this correctly the matrix equation corresponding to
the first-order hydrodynamic equations after a Fourier transformation look like

ω

 δ̃n
ũα
δ̃T

 =

 0 n̄δαβkβ 0
kB T̄
mn̄

δαβkβ −i µ
mn̄

(
k2δαβ +

kαkβ
3

)
kB
m
δαβkβ

0 2
3
T̄ δαβkβ −i2Kk2

3kB n̄


 δ̃n

ũβ
δ̃T

 , (2.88)

where K = (5n̄k2
BT̄ τx)/(2m) and µ = n̄kBT̄ τx is a viscosity coefficient. The important point

of writing this is the ability to verify that now all of the modes have an imaginary component
(either they are strictly imaginary eigenvalues (for variations in pressure and for transverse
shear modes) or complex ones (for longitudinal sound modes), so that we know that over long
time scales perturbations to the gas die away, and the gas eventually reaches its equilibrium
state.

You’ll go through a simple example of first-order hydrodynamics in the homework!
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Chapter 3

Classical Statistical Mechanics1

Statistical mechanics is connected with the phenomenological, “thermodynamical” view of
macroscopic properties we saw in Chapter 1 via a probabilistic description of large numbers of
degrees of freedom. In this chapter we will focus not on microscopic theories for which we can
study both equilibrium and approach-to-equilibrium dynamics as in Chapter 3, but rather on
attempting to provide probability distributions that connect microstates to macrostates. We
will use the idea of unbiased estimates of probability to assign these probability distributions
for different equilibrium ensembles, and use the mathematics of the large-N limit to show
that the ensembles are equivalent in the thermodynamic limit.

3.1 The microcanonical ensemble and the laws of ther-

modynamics

We begin, just as we did in the chapter on Thermodynamics, with a simplified version of our
system of interest, taking an adiabatically isolated state. In the absence of adding heat or
work to the system, the macrostate M is specified completely by the internal energy E, the
set of generalized coordinates x, and the number of particles N : M(E,x, N). In the absence
of any other information, or any knowledge of other conserved quantities, we say that at a
minimum the Hamiltonian evolution equations conserve the total energy of the system, so
that the evaluation of the Hamiltonian on a microstate µ is H(µ) = E.

The central postulate of statistical mechanics is that the equilibrium probability
distribution is

p(E,x,N)(µ) =
1

Ω(E,x, N)
·
{

1 if H(µ) = E
0 otherwise

(3.1)

This is often called “the assumption of equal a priori probabilities,” and we see that it is
the same as the unbiased estimate of probability given only a constraint of constant energy
E. Certainly we saw that this is one of the allowed assignments consistent with Liouville’s

1In this chapter we’ll basically go through Pathria Chapters 2-4... because of the way we started this
course, though, we’ve already done much of the work!
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theorem, although it is not the only one! Although, having seen the chapter on probability,
we are not surprised by this assignment of probability it is nevertheless a deep assumption,

There is a potential subtlety in defining the normalization factor2 Ω here: as written, in
order to make p a properly normalized probability density function (so that it integrates to
unity), we want Ω to be the area of the relevant surface of fixed energy E over the microscopic
phase space. You might be worried about defining probability densities that are non-zero only
on a surface, and so we sometimes define a microstate in the microcanonical ensemble to be
within ∆ of the specified energy: E − 1

2
∆ ≤ H(µ) ≤ E + 1

2
∆. The normalization Ω′ is now

the volume of a shell rather than the area of a surface, and Ω′ ≈ Ω∆. We will see that, since
Ω is typically exponentially large in E, which is itself typically proportional to N , that the
difference between the surface area and the shell volume is negligible, so we’ll go back and
forth between Ω and Ω′ freely.

We define the entropy of the uniform probability distribution exactly as you by now
expect:

S(E,x, N) = kB ln Ω(E,x, N), (3.2)

where we have introduce a factor called “kB” so that entropy has units of energy divided by
temperature. Note, by the way, that we know from Liouville that under canonical transforma-
tions volumes in phase space are invariant, and for the transformed probability distribution
stays uniform on the transformed phase-space surface of constant energy. This tells us that
both Ω and S are invariant under canonical coordinate changes.

To highlight the interconnections with the beginning of this class, we now show that
Eq. 3.1 can be used to derive the laws of thermodynamics (with the exception of Nernst’s
theorem, which as we hinted at the time requires quantum mechanics).

3.1.1 0th Law

Let’s think about bringing two previously isolated microcanonical systems, which originally
had energies E1 and E2, into contact in a way that lets them exchange heat, but not work.
Certainly the combined system has energy E = E1 + E2, and we assume (by assuming that
the interactions between the systems are small) that the microstate of the combined system
corresponds to a pair of microstates of the components. We’ll write this as µ = µ1 ⊗ µ2,
assuming H(µ) = H1(µ1) +H2(µ2). We thus write the fundamental postulate, Eq. 3.1 as

pE(µ) =
1

Ω(E)
·
{

1 if H1(µ1) +H2(µ2) = E
0 otherwise

. (3.3)

We have a fixed total energy, so we can compute the normalization factor as

Ω(E) =

∫
dE1 Ω1(E1)Ω2(E − E1) =

∫
dE1 exp

[
S1(E1) + S2(E2)

kB

]
. (3.4)

We written the normalization factor for our probability this way to make contact with
our “sums and integrals of exponentials” discussion in a previous chapter! We think (and

2“we must learn how to count the number of states it is possible for a system to have or, more precisely,
how to avoid having to count that number” – David Goodstein, States of Matter
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will see later) that entropy is extensive, so that S1 and S2 are proportional to the number
of particles in the system. We use the simple (i.e., non-complex) saddle-point method to
approximate the integral by the maximum of the integrand, giving us

S(E) = kB ln Ω(E) ≈ S1(E∗1) + S2(E∗2), (3.5)

where the starred quantities are the values that maximize the value of the integrand. We
can calculate this values of setting the first derivative (w/r/t E1) of the exponent above to
zero, which gives us:

∂S1

∂E1

∣∣∣∣
x1,N1

=
∂S2

∂E2

∣∣∣∣
x2,N2

. (3.6)

In words, there are many joint microstates which sum to a total energy of E, but there are
exponentially more microstates sitting near (E∗1 , E

∗
2), and so the system eventually flows

from (E1, E2) to (E∗1 , E
∗
2). We get no information about the time dynamics of this process;

just the end result, which is a place where Eq. 3.6 is satisfied.
Also, ah ha!! We have found a condition satisfied by two systems that come into equilib-

rium with each other: the have equal partial derivatives of entropy with respect to energy
(holding everything else fixed)! To be consistent with what we had from phenomenological
thermodynamics, we’ll choose a particular name for the state function corresponding to this
condition:

∂S

∂E

∣∣∣∣
x

=
1

T
. (3.7)

3.1.2 1st Law

Let’s think about what happens to S of a system in the microcanonical ensemble when we
vary the generalized displacements3 by δx This does a work on the system d̄W = J · δx,
and changes the internal energy to E + d̄W . To first order, the change in entropy of such a
variation is

δS = S(E + J · δx,x+ δx)− S(E,x) =

(
∂S

∂E

∣∣∣∣
x

J +
∂S

∂x

∣∣∣∣
E

)
· δx. (3.8)

Now, what does it mean to be in equilibrium? We say we have an equilibrium state at
some value of E and some set of generalized displacements x, and we have said that all
consistent microstates are equally probable. Well, the above equation says that spontaneous
changes in the system will occur, taking us into more likely states, unless the terms in the
parentheses vanish! Thus, a condition to be in equilibrium is that

∂S

∂xi

∣∣∣∣
E,xj 6=i

= −Ji
T
, (3.9)

where we have used the relationship between temperature and ∂S/∂E from the zeroth law.
With this constraint on the variations, we get that in general

dS(E,x) =
∂S

∂E
dE +

∂S

∂x
dx =

dE

T
− J · dx

T
⇒ dE = TdS + J · dx. (3.10)

3for the remainder of this section I’m going to be TEX-lazy and stop distinguishing mechanical work
from chemical work.... it’s all just x now.
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Wow – it’s the first law! And where we’ve, of course, identified d̄Q = TdS.

3.1.3 2nd Law4

The second law is almost obvious, almost by construction, given what we have set up so
far. Indeed, you already know from the section of unbiased estimates that we are assigning
probabilities in a way that maximizes the entropy subject to the constraint on the energy.
For instance, consider our example from the zeroth law of bringing two equilibrium states
at E1 and E2 into contact. Well, clearly

S(E) ≡ kB ln Ω(E1 + E2) ≥ S1(E1) + S2(E2),

which must be true since the two states of the original system are a subset of the possible
combined joint microstates.

Note that we can make additional mathematical statements by considering variations of
entropy. When two systems are first brought into contact but have not yet reached equilib-
rium, the equality in Eq. 3.6 does not yet hold. Instead we have

δS =

(
∂S1

∂E1

∣∣∣∣
x1

− ∂S2

∂E2

∣∣∣∣
x2

)
δE1 =

(
1

T1

− 1

T2

)
δE1 ≥ 0. (3.11)

Thus we recover Clausius’ statement of the second law: we know the variations in S are
positive as we move towards a new equilibirum state, and we see that heat flows from the
hotter to the colder system.

Note that, in principle, these are all probabilistic statements: it is merely much more
likely that a combined system ends up at (E∗1 , E

∗
2) rather than it’s initial and (E1, E2).

This obscures just how much work “much” is doing in the previous sentence, though: the
number of microstates available grows exponentially with system size, and so if we were to
ask how long we would have to wait before seeing our combined system at (E1, E2) rather
than (E∗1 , E

∗
2), the answer would be related to an exponential of that exponential. Needing

to wait this long to see something is a practical definition of saying “you will never see that.”

3.1.4 The ideal gas in the microcanonical ensemble

We return to our favorite toy system for illustrating concepts, the ideal gas of N particles.
We ignore any particle interactions, and say we have

H =
N∑
i=1

p2
i

2m
+ U(qi),

4“The law that entropy always increases holds, I think, the supreme position among the laws of Nature.
If someone points out to you that your pet theory of the universe is in disagreement with Maxwell’s equations
- then so much the worse for Maxwell’s equations. If it is found to be contradicted by observation - well,
these experimentalists do bungle things sometimes. But if your theory is found to be against the Second
Law of Thermodynamics I can give you no hope; there is nothing for it to collapse in deepest humiliation.”
– Arthur Eddington, New Pathways in Science
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where the potential U simply imposes strict confinement to a box of volume V (i.e., we
take U(qi) = 0 if particle i is inside the box and ∞ if it is outside the box). Explicitly, the
microcanonical ensemble has a probability density function

p(µ) =
1

Ω(E, V,N)
·
{

1 if
∑

i(p
2
i /(2m)) = E ± 1

2
∆E and qi ∈ box

0 otherwise
. (3.12)

We can calculate Ω by the requirement that p(µ) is properly normalized, i.e.,
∫ ∏

i dVip(µ) =
1. The integrals over qi are all trivial: each of those N integrals just gives a factor of V . The
integral over the momenta is down by noting we are constraining the momenta to a (finite-
thickness shell around a) surface of a hypersphere, given by

∑N
i p

2
i = 2mE. We thus need

to know the area of a 3N -dimensional sphere of radius R =
√

2mE. The relevant formula
for a d-dimensional sphere is

Ad =
2πd/2

(d/2− 1)!
Rd−1, (3.13)

where it is easy to check that this gives the right result in 2D (and 3D, since (1/2)! =
√
π/2).

Putting this together, with d = 3N , we calculate:

Ω(E, V,N) = V N 2π3N/2

(3N/2− 1)!
(2mE)(3N−1)/2∆E (3.14)

The entropy of the ideal gas is then just the log of this normalization factor. Using
Stirling’s approximation:

S(E, V,N) = kB

[
N lnV +

3N

2
ln(2πmE)− 3N

2
ln

3N

2
+

3N

2

]
= NkB ln

[
V

(
4πemE

3N

)3/2
]
, (3.15)

where in the first line we have dropped terms of order 1, and of order lnE ∝ lnN by arguing
the latter are small compared to these terms of order N in the thermodynamic limit.

With the entropy in hand, and writing dS = 1
T
dE + P

T
dV − µ

T
dN we can get the usual

properties of the ideal gas by differentiating the entropy as appropriate. For instance,

1

T
=

∂S

∂E

∣∣∣∣
N,V

=
3

2

NkB
E
⇒ E =

3

2
NkBT,

the usual equipartition result in the absence of a potential. Similarly,

P

T
=

∂S

∂V

∣∣∣∣
N,E

=
NkB
V
⇒ PV = NkBT,

the ideal gas equation of state.
As a final example of a simple calculation, what about the probability distribution for

finding a particle with some momentum vector p1? Well, we can calculate the unconditional
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PDF by integrating out everything else:

p(p1) =

∫
d3q1

N∏
i=2

dVip(µ)

= V
Ω(E − p1

2m
, V,N − 1)

Ω(E, V,N)
. (3.16)

One can explicitly check (by plugging in the result of Eq. 3.14, using Stirling’s formula,
and noting that p2

1/E is a number of order 1/N) that this explicitly gives you a Maxwell-
Boltzmann distribution for the momentum:

p(p1) =
1

(2πmkBT )3/2
exp

(
−p2

1

2mkBT

)
We derived the Maxwell-Boltzmann distribution result for the velocities in a dilute gas

of non-interacting particles, but it is actually much more general, and Maxwell’s original
derivation relies on nothing by rotational invariance. It’s cool, so I reproduce it here: Consider
the distribution of velocities in, say, the x direction, and call that distribution p(vx). By
rotational symmetry we have the same distribution in the y and z directions. Rotational
symmetry also guarantees that the full distribution cannot depend on the particular direction
for the momentum, but only on the speed c =

√
v · v. So, we want functions pc(c) and p(vx)

that satisfy
pc(c)dvxdvydvz = p(vx)p(vy)p(vz)dvxdvydvz.

Remarkably, there is only one solution which satisfies this, and it is

p(vx) = A exp
(
−Bv2

x

)
,

for some constants A and B. Thus, the distribution of speeds must be

pc(c)dvxdvydvz = 4πc2pc(c)dc = 4πA3c2e−Bc
2

dc.

Nifty. Determining that the coefficients have specific values, like B = m
2kBT

as in the ideal
gas, requires a harder microscopic calculation of the sort we just did.

3.1.5 Gibbs’ Paradox: What’s up with mixing entropy?

You will notice that Eq. 3.15, giving the entropy of an ideal gas, has a major flaw: we expect
entropy to be extensive, but under a transformation (E, V,N)→ (λE, λV, λN) the entropy
actually changes to λ(S+NkB lnλ) rather than λS. There are these extra contributions that
come from the integration over positions, like V N , and this additional contribution is related
to the entropy of mixing distinct gases. Gibbs’ paradox, the fact that this expression for the
entropy suggests an increase even if two identical gases are mixed, is subtle, with some to
this day arguing that its resolution must be quantum mechanical5 and others arguing that

5see, e.g., Kardar’s “Statistical Physics of Particles”
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the paradox is toothless and can be resolved classically6. We will come back to this issue
when we talk about quantum statistical mechanics; I would be delighted if one of you wanted
to discuss the classical issue as an in-class presentation (as described on the syllabus).

As our yet-to-be-understood resolution to the paradox, we will from now on modify our
phase-space measure for identical particles to be

dΓ =
1

h3NN !

N∏
i=1

d3qid
3pi. (3.17)

3.2 The canonical ensemble

In the last section we defined the microcanonical ensemble by considering a macrostate
with a specified energy, E, and we were able to derive an expression for the temperate as
T−1 = ∂S

∂E

∣∣
x
.In the chapter on thermodynamics, though, we saw that E and T are both

functions of state, and that it should be possible to instead start with statistical description
in which the temperature of a macrostate is prescribed and an expression for the energy is
derived.

Welcome to the canonical ensemble, in which we specify the macrostate M(T,x). We
think of prescribing the temperature of the system by putting it in thermal contact with the
reservoir, which is another macroscopic system that is so large that it’s own temperature
does not change as a result of interacting with the system of interest (think, for instance, of
tossing a warm pebble into the ocean – the temperature of the pebble will surely equilibrate
with the temperature of the ocean, and no thermometer reading the temperature of the
ocean will notice the difference).

The goal of the statistical mechanical formulation of thermodynamics is to write down
microstate probabilities that we can associate with macrostates, p(µ) (and from there derive
thermodynamic consequences), and here, too, we rely on the central postulate of statistical
mechanics, Eq. 3.1! Let’s define the system to be in microstate µ with energy HS(µ) and the
reservoir to be in microstate µR with energyHR(µR), satisfying Etotal = HS(µ)+HR(µR).The
joint probability of the microstates µS ⊗ µR is then assumed to be

p(µS ⊗ µR) =
1

ΩS⊕R(Etotal)
·
{

1 if HS(µ) +HR(µR) = Etotal
0 otherwise

(3.18)

Ultimately, though, we are not interested in this microcanonical joint-probability distribution
for the combined system, we want the unconditional PRF for the microstates. But this we
can obtain (as expected) by summing the joint PDF over the microstates of the reservoir:

p(µ) =
∑
µR

p(µS ⊗ µR) (3.19)

6see Jayne’s discussion, or that of Frenkel’s more recent article
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We make progress, here, by doing something similar to how we calculated p(p1) in the
microcanonical ensemble in Eq. 3.16: we say that by looking at a specific system microstate
µ, the sum over reservoir states in the above equation is restricted to run over microstates
with HR(µR) = Etotal −HS(µ):

p(µS ⊗ µR) =
ΩR(Etotal −HS(µ))

ΩS⊕R(Etotal)
. (3.20)

Let’s focus on the numerator for now (noting that the denominator, which just provides
an overall normalization, can always be effectively recovered by imposing a normalization
condition of p(µ) when we’re done). Well, ΩR is related to the entropy of the reservoir:

ΩR(Etotal −HS(µ))

ΩS⊕R(Etotal)
∝ exp

(
SR(Etotal −HS(µ))

kB

)
. (3.21)

Let’s write that entropy expression as

SR

(
Etotal

(
1− Hs(µ)

Etotal

))
≈ SR(Etotal)−Hs(µ)

∂SR
∂ER

= SR(Etotal)−
HS(µ)

T
,

where we have finally used our assumption that the reservoir is (energetically) humongous
relative to the system. Combining this approximation with our evaluation of the unconditional
PDF, we ultimately arrive at the canonical probability distribution for a microstate with a
specified temperature and set of generalized displacements:

p(µ) =
1

Z(T,x)
e−βH(µ), (3.22)

where I’ve dropped subscripts, introduced β = (kBT )−1, and defined the partition function

Z(T,x) =
∑
µ

e−βH(µ) . (3.23)

3.2.1 The partition function as a generator of moments

So, we’ve specified the temperature of the system, and it is exchanging energy back and
forth with the reservoir to maintain that temperature. The energy of the system is now a
random variable, which we’ll call E so that the notation doesn’t get too confusing. What is
the probability distribution associated with E? Glad you asked! We change variables from µ
to H(µ) and get

p(E) =
∑
µ

p(µ)δ (H(µ)− E) =
1

Z
e−βE

∑
µ

δ (H(µ)− E) ,

but the sum over delta functions just picks out the number of microstates with the appro-
priate energy Ω(E), which is related to the entropy, so

p(E) =
Ω(E)e−βE

Z
=

1

Z
exp

[
S(E)

kB
− E
kBT

]
=

1

Z
exp [−βF (E)] , (3.24)
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where F = E − TS(E) is obviously going to be related to the Helmholtz free energy. We can
further simplify by noting that both S and E should be extensive, so we should be able to
approximate sums of exponentials by the dominant term... we expect the probability to be
sharply peaked about some most probably energy, E∗, and so we approximate the partition
function as

Z =
∑
µ

e−βH(µ) =
∑
E

e−βF (E) ≈ e−βF (E∗). (3.25)

So, the method of most probable values suggests a logarithmic relationship between F and
Z. This is reinforced by the method of mean values, where we compute the average energy
of the system as

〈H〉 =
∑
µ

H(µ)
exp (−βH(µ))

Z
= − 1

Z

∂

∂β

∑
µ

e−βH = −∂ lnZ

∂β
. (3.26)

This, too, suggests the identification of the Helmholtz free energy as

F (T,x) = −kBT lnZ(T,x). (3.27)

Are the mean and most probable values close? They should be if the above identi-
fication is to make sense via the two routes we just described! We can address this question
by looking at the variance of the energy and comparing it to the mean. Notice that the
partition function, viewed as function of β, is proportional to the characteristic function of
H, with β standing in for the combination ik. So, we can easily generate moments by taking
derivatives of Z with respect to β, e.g:

− ∂Z

∂β
=
∑
µ

He−βH, ∂2Z

∂β2
=
∑
µ

H2e−βH. (3.28)

From this, we see that the first moment is just

〈H〉 = 〈H〉c = − 1

Z

∂Z

∂β
= −∂ lnZ

∂β
(3.29)

With a moment generating function comes a cumulant generating function, here just lnZ!
Generally, taking care of the minus signs, we have

〈Hn〉c = (−1)n
∂n lnZ

∂βn
,

and explicitly

〈
H2
〉
c

=
∂2 lnZ

∂β2
= −∂ 〈H〉c

∂β
= kBT

2 ∂ 〈H〉
∂T

∣∣∣∣
x

⇒
〈
H2
〉
c

= kBT
2Cx,

where have identified that the variance of the energy is related to the heat capacity. Compare
this condition to the stability requirement in HW 1 for why the heat capacity had to be
positive! Also, to answer the question posed just above, note that every cumulant of H is
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proportional to N , which itself tells you that the relative error
√
〈H2〉c/ 〈H〉c ∼ N−1/2, so

that it vanishes in the thermodynamic limit. Thus, the mean energy and most probable
energy are identical as N →∞.

Note, by the way, that with all of the above identifications, we can define the entropy
using Eq. 3.22 directly, as

S = −kB 〈p(µ)〉 = kB 〈(−βH− lnZ)〉 =
E − F
T

, (3.30)

recovering the familiar expression for the Helmholtz free energy.

3.2.2 The ideal gas in the canonical ensemble

Let’s explicitly show that the canonical ensemble returns familiar relations for an ideal gas.
The probability distribution is

p(µ) =
1

Z
exp

(
−β

N∑
i=1

p2
i

2m

)
·
{

1 if qi ∈ box
0 otherwise

, (3.31)

and we compute the partition function (with the correction to the phase space measure from
Eq. 3.17!) as

Z(T, V,N) =

∫
1

N !

N∏
i=1

d3qid
3pi

h3
exp

(
−β

N∑
i=1

p2
i

2m

)
=
V N

N !

(
2πmkBT

h2

)3N/2

. (3.32)

The free energy is

F = −kBT lnZ = −NkBT
(

ln

(
V e

N

)
+

3

2
ln

(
2πmkBT

h2

))
, (3.33)

and using dF (T, V,N) = −SdT−PdV +µdN we can extract the usual properties of the ideal
gas. For example, the entropy is −S = ∂F

∂T

∣∣
V,N

= F−E
T

, and P = − ∂F
∂V

∣∣
T,N

= NkBT
V

. Note that

the very form of the probability distribution in Eq. 3.31 tells us the microcanonical result
we had for p(p1), that the momenta of the particles are drawn from independent Gaussian
distributions.

3.3 Gibbs canonical ensemble

Briefly7, it is sometimes more convenient to work in an ensemble where the internal energy
can change by exchanging heat with a reservoir (as in the canonical ensemble) but also by
exchanging work.The macrostate M(T,J) is now specified by the temperature and forces
acting on the system, and we view both the energy and the generalized coordinates x as
random variables (but not including chemical work, which we will treat in the grand canonical

7i.e., entirely by analogy with the last section
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ensemble shortly... thus, N is fixed). We proceed just as above, and find that the microstates
of the system have a probability distribution

p(µ) =
exp (−βH(µ) + βJ · x)

Z(T,N,J)
, (3.34)

where the Gibbs partition function is

Z(T,N,J) =
∑
µ,x

exp (−βH(µ) + βJ · x) . (3.35)

We can use, again, either the “most probable value” or “mean value” method to relate the
expectation values of the generalized displacements to the Gibbs partition function, like

〈x〉 = kBT
∂ lnZ
∂J

, (3.36)

and we use the thermodynamic result that x = −∂G
∂J

to make the identification

G(T,N,J) = −kBT lnZ, (3.37)

where we have again written the Gibbs free energy encountered in Chapter 1 as G = E −
TS − x · J . On can, for instance, extract the enthalpy H = E − x · J = −∂ lnZ

∂β
, or the heat

capacity at constant force as CJ = ∂H
∂T

3.4 The grand canonical ensemble

We now generalize once more from the canonical ensemble to the grand canonical ensemble.
For the canonical ensemble we said that even though energy was a conserved quantity, it often
makes more sense8 to put a system in contact with a reservoir of heat so that temperature
is the fixed quantity and E becomes a random variable as the system and the reservoir
exchange heat. We measure temperature all the time, but when, after all, was the last time
you precisely measured the energy of a macroscopically large system? In the same way, it
often behooves us to generalize yet further and allow our system to also exchange particle
number with the reservoir – now both N and E are variables and the expectation values,
〈N〉 and 〈E〉 are identified with thermodynamically interested quantities. For this system we
require that the reservoir be at a fixed value of temperature T and chemical potential µ, and
we now create a probability distribution corresponding for the grand canonical ensemble, in
which the macrostates are functions of M(T, µ,x).

Notationally, since µ is the chemical potential, I’ll be careful about using µS to refer to a
microstate of the system we’re interested in. The probability density function for µS is again

8and, as we will see in later chapters, often makes it easier to calculate
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derived by invoking the fundamental postulate and summing over all states of the reservoir,
ultimately giving

p(µS) =
1

Q(T, µ,x)
exp [−βH(µS) + βµN(µS)] , (3.38)

where N(µS) is the number of particles in microstate µS, and where Q is the grand partition
function:

Q(T, µ,x) =
∑
µS

exp [βµN(µS)− βH(µ)] . (3.39)

We can usefully rearrange the above summation by first grouping together all of the mi-
crostates with the same number of particles in them. Letting HN refer to the Hamiltonian
associated with the N -particle system, we write

Q(T, µ,x) =
∞∑
N=0

eβµN
∑
µS

e−βHN (µS) =
∞∑
N=0

zN
∑
µS

e−βHN (µS), (3.40)

where we have additionally defined the fugacity9 z = exp(βµ). Notice, by the way, that the
second sum – over microstates with a particular number of particles – are the canonical
partition functions associated with an N -particle system, so we can additionally write

Q(T, z,x) =
∞∑
N=0

zNZN(T,x), defining Z0 ≡ 1. (3.41)

This form makes it seem that to calculate the grand canonical partition function we need to
have already calculated the canonical partition function. In principle we indeed do, but in
later chapters10 we’ll see how we can sometimes make great progress in evaluating Q even
in situations where evaluating Z is very difficult.

3.4.1 Number fluctuations in the grand canonical ensemble

Earlier we showed the generic equivalence of the canonical and microcanonical ensembles as
N → ∞ by establishing that the average value of the energy and the most probable value
of the energy became indistinguishable in the thermodynamic limit. Here we do the same
thing by considering both the mean and most typical value of the number of particles. We
note that from the definition of Q we can read off the total weight of the microstates with
N particles, the probability for finding the system with N particles is

p(N) =
eβµNZ(T,N,x)

Q(T, µ,x)
. (3.42)

We write the average as

〈N〉 =
1

Q
∂Q
∂(βµ)

=
∂ lnQ
∂(βµ)

, (3.43)

9Derived from fugere, to flee. The term was popularized in an early textbook by Gilbert Lewis and Merle
Randall as an “escaping tendency,” referring to the flow of matter between phases, and playing a similar role
to temperature in the flow of heat.

10both on quantum stat mech and on interacting systems
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and the variance as

〈
N2
〉
c

=
〈
N2
〉
− 〈N〉2 =

1

Q
∂2Q
∂(βµ)2

−
(
∂ lnQ
∂(βµ)

)2

=
∂2 lnQ
∂(βµ)2

=
∂ 〈N〉
∂(βµ)

. (3.44)

We again see that the variance is proportional to 〈N〉, so we again get that the relative fluc-
tuations, σN/ 〈N〉 vanish in the thermodynamic limit. This suggests the equivalence of the
grand canonical ensemble with the others, but have we been a little too glib, here? Let’s help-
fully re-write the above, using some thermodynamic relationships that are straightforward
to derive, as

〈N2〉c
〈N〉2

=
kBT

V
κT , (3.45)

where κT is once again the isothermal compressibility. From this we see that the relative
RMS fluctuations in particle density are ordinarily O(N−1/2), but we will sometimes see
exceptions. In particular, interesting things happen near phase transitions, and one often
sees the compressibility of a system grow very large. For instance, near a liquid-vapor phase
transition at temperature Tc experiments suggest that that isothermal compressibility itself
scales with system size, like κT (Tc) ∼ N0.63, suggesting unusually large fluctuations of particle
density near the critical point. Such fluctuations can be seen in experiments11.

So, under these sorts of circumstances the formalism associated with the grand canonical
ensemble could in principle give non-identical answers as the formalism associated with the
canonical ensemble. In these cases, we have no choice but to use the grand canonical ensemble.
Also, you may be wondering where the unsual real-number exponent came from in the above
experimental statement about density fluctuations at the liquid-vapor transition... we will
see at the end of class where, in principle, such exponents come from.

3.4.2 Thermodynamics in the grand canonical ensemble

From the above, we now once again approximate the sum in Eq. 3.39 by its single largest
term, which corresponds to the typical value of N (note that we feel free to go back and
forth between fugacity and chemical potential representations as we see fit):

Q(T, µ,x) = lim
N→∞

∞∑
N=0

[
eβµNZ(T,N,x)

]
≈ eβµN

∗−βF = e−βG, (3.46)

where
G(T, µ,x) = E − TS − µN = −kBT lnQ

is the grand potential (which we first met in Chapter 1), which is up to a factor of −kBT
what Pathria defines as the q-potential. We can recover typical thermodynamic relationships
using dG = −SdT−Ndµ+J ·dx, and extract pressures or heat capacities by usual derivative
manipulations.

11check out, for instance, some of the critical opalescence videos that are easy to find on youtube
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3.4.3 The ideal gas in the grand canonical ensemble

We once again churn through our standard example, the ideal gas, for the grand canonical
ensemble. We have a macrostate M(T, µ, V ), where the corresponding microstates are over
particle positions and momenta with an indefinite number of particles in the specified volume.
Introducing the thermal de Broglie wavelength12 λ = h/

√
2πmkBT , the grand partition

function is

Q(T, µ, V ) =
∞∑
N=0

eβµN
1

N !

∫ ( N∏
i=1

dVi
h3

)
exp

[
−β

N∑
i=1

p2
i

2m

]

=
∞∑
N=0

1

N !
eβµN

(
V

λ3

)N
= exp

(
eβµ

V

λ3

)
(3.47)

⇒ G(T, µ, V ) = −kBT lnQ = −kBTeβµ
V

λ3
(3.48)

We can immediately read off things like13

P = − ∂G
∂V

∣∣∣∣
T,µ

= kBT
z

λ3

or

N = − ∂G
∂µ

∣∣∣∣
T,V

=
zV

λ3
⇒ PV = NkBT,

as we have come to expect the equation of state for the ideal gas to look.
Notice, also, that G for an ideal gas only depends on a single extensive variable: V . Since

we Expect G to itself be extensive14, it must be that G ∝ V . We have a name for the constant
of proportionality: “pressure,” so G(T, V, µ) = −P (T, µ)V . This makes for an easy method
of computing pressures of systems that depend only on one extensive variable15.

It is worth saying a bit more about the chemical potential, here. Rearranging that last
expression for N gives

µ = kBT log

(
λ3N

V

)
, (3.49)

and if λ3 < V/N , as we certainly expect if we are to be doing classical calculations in the first
place, then the chemical potential is negative! Is it clear why this makes sense? By writing

12Anticipating future developments in this course, λ helps characterize the regime in which classical
statistical mechanics is typically valid: if λ is roughly the same order of the typical separation between
particles then quantum effects become important.

13switching back to the fugacity, largely to save on TEXtime
14i.e., satisfying G(T, λV, µ) = λG(T, V, µ)
15As we’ll see in the chapter on Quantum statistical mechanics, for example, when we calculate the grand

partition function of ideal quantum gases.
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µ as conjugate to N , we intuitively think of it as the energy cost associated with adding an
extra particle to the system, but we need to look more carefully at the definition:

µ =
∂E

∂N

∣∣∣∣
S,V

.

That is, µ is the energy cost of adding a particle at fixed entropy and volume. In general,
adding a particle will in fact increase the entropy (since there are more ways of partitioning
the available energy), so if we are holding entropy fixed then the system must be lowering
its energy when adding a particle. Hence, µ < 0 for the classical ideal gas.

3.5 Failures of classical statistical mechanics

Classical statistical mechanics is an incredibly powerful framework for understanding the
physical properties of many systems, but it certainly has limitations. We have already seen
the Gibbs paradox and our current, somewhat ad hoc solution of throwing in a factor of N !
to account for classically indistinguishable particles. We have also seen that in going from
S = −

∑
i pi ln pi to S = −

∫
dx p(x) ln p(x) there is a problem of choosing units, and in the

last few sections we have introduced a random factor of h to fix the unit problem without
understanding why a particular scale of coarse-graining is appropriate or what the value of
h actually is. In this section we also emphasize that there are observable, low-temperature
phenomena for which classical mechanics makes incorrect predictions, further necessitating
the introduction of quantum mechanical to our description. The following subsections provide
a few concrete illustrations.

3.5.1 Dilute diatomic gases

Actually, classical statistical mechanics fails to predict heat capacities both in the gaseous
phase and and in the solid phase... not a great track record. Let’s see what happens for a
dilute gas of diatomic molecules.

We’ll take a simplified view and consider diatomic molecules consisting of two atoms in
a bound state, and let’s write down an idealized, classical model for such a molecule: two
equal masses connected by a spring. So, in addition to the usual translational modes we’ve
been considering, the molecule can also move via (a) rotations in which the molecule rigidly
rotates about either of the two axes16 normal to the symmetry axis, with moment of inertia
I, and (b) vibrations in which the molecule oscillates along the axis of symmetry.

We first assume that the gas is sufficiently dilute that the molecules behave independently,
so that the total partition function is

Z(N) =
ZN

1

N !
,

Where Z1 is the partition function for a single diatomic molecule. We further assume that
three modes of molecular motion are all independent, in which case the single-molecule

16we neglect the rotation about the axis of symmetry, arguing that it has a low moment of inertia compared
to the other two. We’ll see that this is hardly the problem.

80



partition function factorizes into the contribution due to each term:

Z1 = ZtransZvibZrot.

We already know what the translational partition function looks like, what about the other
two terms?

From your classical mechanics course, the Lagrangian for the rotational degrees of freedom
is

Lrot =
1

2
I
(
θ̇2 + φ̇2 sin2 θ

)
,

with conjugate momenta

pθ =
∂Lrot

∂θ̇
= Iθ̇, pφ =

∂Lrot

∂φ̇
= Iφ̇ sin2 θ.

The hamiltonian for the rotational piece is therefore

Hrot = θ̇pθ + φ̇pφ − L =
p2
θ

2I
+

p2
φ

2I sin2 θ
.

So, the rotational contribution to the partition function is

Zrot =
1

h2

∫
dθdφdpθdpφe

−βHrot =
8π2IkBT

h2
. (3.50)

What about the vibrational mode? It’s just a harmonic oscillator. Denoting the displace-
ment away from the equilibrium position of the molecular “spring” by ζ and the vibrational
frequency by ω, the Hamiltonian is

Hvib =
p2
ζ

2m
+

1

2
mω2ζ2,

from which we find the partition function contribution to be

Zvib =
1

h

∫
dζdpζ e

−βHvib =
2πkBT

hω
. (3.51)

Putting together all of these ingredients (or, by your expectations from equipartition of
energy among all of the quadratic modes in the combined Hamiltonian), we expect that the
heat capacity and constant volume for our diatomic gas is

CV =
7

2
NkB, (3.52)

an end result which does not depend on the precise value of I or the stiffness of the bond
between the atoms. The only problem is that our prediction for the heat capacity is... not
borne out in the experimental data. In Fig. 3.1 I’ve schematically17 plotted the heat capacity
of H2 – the simplest diatomic gas – over a broad range of temperatures. At very high
temperatures we do see the heat capacity we expected, but at the lowest temperatures the
system seems to behave like a monatomic gas, so apparently the diatomic molecules are
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Figure 3.1: (Schematic) heat capacity of hydrogen gas vs logarithmically scaled
temperature. That “NA” is a typo, and should just be N , of course.

neither rotating nor vibrating. Even away from the typical “very low temperatures” we
expect to see quantum effects in – that is, even at room temperature! – there is a large
discrepancy between our prediction and the actual heat capacity, and apparently there are
rotations but not vibrations (we’ll see how we picked out that particular mode later).

This behavior was arguably the first time that quantum mechanics revealed itself in
experiments, and scientists at the end of the 19th century were increasingly unsettled.

3.5.2 Black-body radiation18

The classical failure of the calculation of the black-body spectrum (i.e., what light is emitted
from a source at a particular temperature) and its quantum resolution is a story that I suspect
is familiar from previous courses in quantum mechanics. Very briefly, then, we consider our
first quantum gas: a gas of photons. In principle we are interested in the emission spectrum
of an idealized substance that can absorb photons of any wavelength and reflects none of
them. In a real atomic system there would be a (potentially) interesting pattern of absorption
and emission lines, but we ignore such details for now and consider our idealized substance
which, at zero temperature, would appear black (hence the name).

So, we know a photon is characterized by its wavelength λ or its frequency ω = 2πc/λ = kc
for speed of light c and wavevector k, with energy E = ~ω. An important fact about photons
is that they are not conserved : there is no reason that the walls of our black-body substance

17Actual data available from NIST, if you’re interested
18“It was an act of desperation. For six years I had struggled with the blackbody theory. I knew the

problem was fundamental and I knew the answer. I had to find a theoretical explanation at any cost, except
for the inviolability of the two laws of thermodynamics.” – Max Planck, in a letter to R. W. Wood, 1931
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couldn’t absorb a photon and then emit two19. Thus, when we calculate quantities in the
canonical ensemble we need to make sure that we sum over possible states with different
numbers of photons, since they are allowed states. Equivalently, we can imagine that we
work in the grand canonical ensemble, but with chemical potential µphoton = 0.

To build up the partition function, let’s first consider photons with a particular frequency
ω; N such photons would have energy E = N~ω, and summing over the allowed N gives a
partial partition function

Zω = 1 + e−β~ω + e−2β~ω + e−3β~ω + · · · = 1

1− e−β~ω
. (3.53)

We assume that the different frequencies are independent, and the total partition function
is a product of independent partition functions, so we can write the logarithm as a sum:

logZ =

∫ ∞
0

dωg(ω) logZω,

where g(ω) is the density of states : g(ω)dω counts the number of states in the frequency
range between ω and ω + dω. We can calculate this by, say, assuming periodic boundary
conditions in a box of linear size L, which then permits wavevectors k = 2π{nx, ny, nz},
where {nx, ny, nz} are all integers. Planck suggested that the allowed values of energy must
be quantized,

HEM =
∑
k,α

~ck
(
nα(k) +

1

2

)
, nα(k) = 0, 1, 2, . . . ,

where α refers to the polarization of the photon. One can use this to compute the associated
density of states for the photon gas. For now I’ll ignore terms relating to the factor of 1/2
above, since we usually only care about (or can detect!) energy differences. Taking into
account the fact that photons can come in two polarization states, one eventually gets

g(ω)dω =
V ω2

π2c3
dω.

Combing these results, we get that

lnZ =

∫ ∞
0

dωg(ω) logZω = − V

π2c3

∫ ∞
0

dω ω2 ln
(
1− e−β~ω

)
. (3.54)

From this we can get, e.g., the energy stored in the photon gas:

E = −∂ lnZ

∂β
=

V ~
π2c3

∫ ∞
0

dω
ω3

eβ~ω − 1
=

V

π2c3

(kBT )4

~3

∫ ∞
0

dx
x3

ex − 1
. (3.55)

That last integral can be explicitly evaluated (with some work), with the end result

E

V
=

π2k4
B

15~3c3
T 4. (3.56)

19Of course, you know this, as you demonstrate the non-conservation of photon number every time you
change the state of a (functional) light switch
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The free energy F = −kBT lnZ can be calculated; integration by parts (to take care of
the log inside the integral) gets us to

F = − V π2

45~3c3
(kBT )4, (3.57)

from which we can calculate, e.g., the pressure due to electromagnetic radiation as

P = − ∂F

∂V

∣∣∣∣
T

=
E

3V
=

4σ

3c
T 4,

where

σ =
π2k4

B

60~3c2
= 5.67× 10−8 J

sm2K4

is the Stefan constant20

We didn’t really emphasize the way the classical version of the above calculation fails, as
I’m sure you’ve seen it before. Briefly, classically we should think that the Hamiltonian for
the EM field can be written in terms of the normal modes characterized by k, so that the
energy looks like a collection of independent harmonic oscillators corresponding to photons
of different wave-number and polarization. Classically, though, there is no limit on the size
of k, leading to the ultraviolet catastrophe: we assign kBT of equipartitioned energy to each
independent quadratic mode of H, leading to an infinite amount of energy stored in the
high-frequency modes. This is... not physical.

By the way, all along we discarded the terms related to the extra 1/2 in HEM . Had we
kept those terms around we would have found things like

P = − ∂F

∂V

∣∣∣∣
T

= P0 +
E

3V
,

where P0 is an infinite zero-point pressure. Usually, this infinite zero-point pressure cancels
with some other part of your calculation, but not always! Differences in this quantity P0 lead
to Casimir forces between, e.g., conducting plates, which can be experimentally measured.

20the value of which in SI units is particularly easy to remember, since it is “five (point) six seven times
(ten to the negative) eight.”
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Chapter 4

Quantum Statistical Mechanics1

Quantum statistical mechanics should be inherently quantum mechanical, statistical in na-
ture, and able to resolve some of the issues with classical statistical mechanics that we en-
countered at the end of the last chapter2. When considering blackbody radiation we already
introduced a simplistic version of quantum mechanical effects by forcing the energy levels of
the photon gas to be quantized, and we assumed that the quantum mechanical microstates
were specified by this quantized energy and governed by a probability distribution related
to the Boltzmann weights.

Why were we allowed to make such assumptions? What is the traditional resolution of
Gibbs’ paradox? Why is Planck’s constant floating around in classical partition functions?
In this chapter we formalize a quantum description of statistical mechanics by following the
steps that led us to the classical description (Chapters 3 and 4).

4.1 The classical limit of a quantum partition function

Let’s jump right in and explain why there are factors of 1/h in the classical partition func-
tions. Classically, we defined the partition function for a single classical particle as an integral
over phase space:

Z1 =
1

h3

∫
d3qd3pe−βH(p,q),

where the 1/h was required to get the units right (i.e., so that Z is dimensionless), but where
there was a particular value of h to use: Planck’s constant h = 2π~ ≈ 6.6 × 10−34Js. Why
is there this quantum-mechanical number in our classical formulas? We don’t need to wave
our hands: we can derive it.

To keep things simple, let’s consider a single particle in one dimension, so that it’s Hamil-
tonian is

Ĥ =
p̂2

2m
+ V (q̂),

where p̂ is the momentum operator and q̂ is the position operator.

1Selections from Pathria Chapter 5-8; the majority of Chapter 5, 6.1, 6.2, and at the thermodynamics
of ideal Bose and Fermi gases

2Future editions of these notes will maintain the parallelism.

85



Writing the eigenstates in the energy basis, with |n〉 associated with energy En, the
quantum partition function3 is

Z =
∑
n

e−βEn =
∑
n

〈n|e−βĤ |n〉, (4.1)

where the operator

e−βĤ =
∞∑
n=0

(−1)n
(βĤ)n

n!
.

In general, by the way, we can think of functions of matrices in this way, taking f(M) =∑∞
i=0 aiM

i for a matrix M are where the ai define the power series of the function. It is
often, though, easier to write down the matrix in a basis which diagonalizes M . Let’s write
the diagonalized version of the matrix as M̃ ; in the diagonalizing basis any function can be
written as

f(M̃) =


f(M̃11) 0 0 0 · · ·

0 f(M̃22) 0 0 · · ·
... 0 f(M̃33) 0 · · ·
...

...
. . . . . . . . .

 . (4.2)

One can then transform back into whichever basis you like. This procedure is a natural way
to define the log, as in expressions for the entropy in terms of the density matrix ρ,

S = −kBTr (ρ log ρ) . (4.3)

As usual we are free to insert the identity operator, constructed by summing over any
complete basis of states. We’ll do this with both the position eigenvectors and the momentum
eigenvectors:

1 =

∫
dq|q〉〈q|, 1 =

∫
dp|p〉〈p|.

We first add two copies of the position-eigenstate identity to the partition function, on either
side of the e−βĤ :

Z =
∑
n

〈n|
∫
dq|q〉〈q|e−βĤ

∫
dq′|q′〉〈q′|n〉

=

∫
dqdq′〈q|e−βĤ |q′〉

∑
n

〈q′|n〉〈n|q〉

=

∫
dq〈q|e−βĤ |q〉, (4.4)

where in the last line we replaced
∑

n |n〉〈n| with the identity operator and used 〈q′|q〉 =
δ(q′ − q) and integrated over q′. So far the result of this manipulation is to replace a sum
over energy eigenstates with an integral over position eigenstates4.

3We’ll see this more explicitly soon, but the form should be familiar enough that you don’t object...
4we can do this with any complete basis; as we’ll see shortly we can write the partition function without

referencing a specific basis by Z = Tr
(
e−βĤ

)
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Let’s take the classical limit of this partition function, by which we mean that we’ll
typically neglect terms that are of order h. We exploit this by trying to factorize e−βĤ into
a position and a momentum piece, remembering that5

eÂeB̂ = exp

(
Â+ B̂ +

1

2
[Â, B̂] + · · · ,

)
(4.5)

where we additionally recall the commutation relation [q̂, p̂] = i~. Taking the classical limit
means we neglect the corrections to the naive factorization, writing

e−βĤ = e−βp̂
2/(2m)e−βV (q̂) +O(~). (4.6)

To complete the derivation, let’s carefully start transitioning exponentiated operators into
ordinary functions:

Z =

∫
dq 〈q|e−βp̂2/(2m)e−βV (q̂)|q〉

=

∫
dq e−βV (q)〈q|e−βp̂2/(2m)|q〉

=

∫
dqdpdp′ e−βV (q)〈q|p〉〈p|e−βp̂2/(2m)|p′〉〈p′|q〉

=
1

2π~

∫
dqdp e−βH(p,q), using 〈q|p〉 =

1√
2π~

eipq/~. (4.7)

Thus, we see the natural consequence of the underlying quantum mechanical description
even when we take the classical limit and do our best to ignore ~.

4.2 Microstates, observables, and dynamics

4.2.1 Quantum microstates

With that as an appetizer, let’s write down a few definitions6 to get us more properly
started on quantum statistical mechanics. Classically, we started with microstates for N
particles that were specified by a point in 6N -dimensional phase space and governed by
Hamiltonian evolution equations. Quantum mechanically, of course, positions and momenta
are not independently observable, so this is a poor choice of microstate. Instead, a quantum
system is specified by a unit vector in a Hilbert space7, |ψ〉. Given a set of orthonormal basis
vectors |n〉 we can write the microstate as

|ψ〉 =
∑
n

〈n|ψ〉|n〉, (4.8)

5Baker-Campbell-Hausdorff formula
6I will, naturally, assume you already know quantum mechanics, so here we’re just dotting some i’s
7A generalization of Euclidean space: a Hilbert space H is a vector space equipped with an inner product

whose induced distance function makes H a complete metric space
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where the 〈n|ψ〉 are complex numbers, where we keep in mind that 〈ψ|n〉 = 〈n|ψ〉∗, the
complex conjugate.

As a unit vector, ψ is normalized so that

〈ψ|ψ〉 =
∑
n

〈ψ|n〉〈n|ψ〉 = 1, (4.9)

4.2.2 Quantum observables

Classically, in Chapter 3 we introduced observable functions of phase space, A ({p, q}). Quan-
tum mechanically, observables get promoted to operators by substituting the position and
momentum operators for the position and momentum variables in the classical expressions8,
e.g. Â, as we saw in the first part of this chapter. Just as classically we had the Poisson
bracket, {pi, qj} = δij, here we have the commutation relation [p̂a, q̂b] = p̂aq̂b − q̂bp̂a = ~

i
δab,

and we can write our observables, if we wish, as functions of the position and momentum:
A(p̂, q̂).

Unlike in classical mechanics, in addition to the (classical) probabilistic nature of our
ensembles, quantum mechanically our observables themselves are matrices that don’t have
definite values; i.e., they are not uniquely determined for a particular microstate. This ad-
ditional randomness means the observables are themselves random variables, so we must
content ourselves with their expectation values, defined as

〈A〉 = 〈ψ|A|ψ〉 =
∑
m,n

〈ψ|m〉〈m|A|n〉〈n|ψ〉. (4.10)

Since we demand real observables, the operators A must be Hermitian9: A† = A.

4.2.3 Time evolution of states

Classically we got a lot of mileage out of the hamiltonian evolution of the phase space
coordinates. The quantum mechanical state vector has a time evolution given by

i~
∂

∂t
|ψ(t)〉 = H|ψ(t)〉. (4.11)

It is often convenient to work in the basis which diagonalizes the Hamiltonian (i.e., the
basis formed by the energy eigenstates), satisfying H|n〉 = En|n〉 where En are the “eigen-
energies.” In such a basis, exploiting the orthonormality of the basis 〈m|n〉 = δmn lets us
write the time evolution of the state as

i~
d

dt
〈n|ψ(t)〉 = En〈n|ψ(t)〉 ⇒ 〈n|ψ(t)〉 = exp

(
−iEnt

~

)
〈n|ψ(0)〉. (4.12)

Probably the first basis we learn about is composed of the spatial coordinates, |{qi}〉, for
which

ψ (q1, q2, . . . , qN) ≡ 〈{qi}|ψ〉
is the wavefunction.

8after, of course, properly symmetrizing products, for instance pq → (pq + qp)/2
9which is why we worried about symmetrizing position and momentum when going from classical to

quantum operators.
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4.3 The density matrix and macroscopic observables

Classically, macrostates are specified by just a few thermodynamic coordinates, and we
studied ensembles of large numbers of microstates µs, which were equipped with a probability
ps ≡ p(µs), which corresponded to a given macrostate. We often don’t have precise knowledge
of the microstate (i.e., the system is not a pure state); more generally we expect it to be a
mixed state, existing as an incoherent mixtures of being in a variety of quantum states10.

We similarly start out with a mixed state, an incoherent mixture of states |ψα〉 with
probabilities pα. The ensemble average of the expectation value of an observable in such a
mixed state is

¯〈A〉 =
∑
α

pα〈ψα|A|ψα〉 =
∑
α,m,n

pα〈ψα|m〉〈n|ψα〉〈m|A|n〉

=
∑
m,n

〈m|A|n〉〈n|ρ|m〉 = Tr (ρA) , (4.13)

where we have introduced the density matrix ρ, which in a given basis is

ρ =
∑
α

pα|ψα〉〈ψα|, (4.14)

and where the trace of an operator is the sum over the diagonal elements, Tr (M) =∑
α〈Φα|M |Φα〉, which is independent of which basis {Φα} you use.

4.3.1 Basic properties of the density matrix

1. Sufficiency: All measurements in quantum mechanics involve expectation values of
operators. Thus, the density matrix contains sufficient information for anything we
might want to do.

2. Pure states: The density matrix corresponds to a pure state, a state with a definite
wavefunction ψ, if and only if ρ = |ψ〉〈ψ|, hence if and only if ρ2 = ρ.

3. Positive definite: The eigenvalues of ρ are all positive, since for any state

〈φ|ρ|φ〉 =
∑
n

pn〈φ|ψn〉〈ψn|φ〉 =
∑
n

pn|〈φ|ψn〉|2 ≥ 0.

4. Normalization: Since the ψα are themselves normalized, we have

Tr (ρ) =
∑
n

pn〈ψn|ψn〉 =
∑
n

pn = 1.

5. Hermiticity: By inspection, the density matrix is Hermitian, with ρ† = ρ.

10Not in a superposition, of states, by the way. A quick example: take a spin in the up-down basis. The
superposition state 2−1/2(|↑〉+ |↓〉) is a diagonally polarized state. An unpolarized spin is a mixture of half
up and half down, described by a density matrix 1

2 (|↑〉〈↑|+ |↓〉〈↓|). The latter is what we mean.
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Time evolution of the density matrix

Classically we had Liouville’s theorem for the evolution of the density, dρ
dt

= ∂ρ
∂t
− {H, ρ};

what do we have here? Again working in the energy eigenbasis, we can write

i~∂tρ =
∑
n

pni~∂t (|ψn〉〈ψn|)

=
∑
n

pn [H|ψn〉〈ψn| − |ψn〉〈ψn|H]

= Hρ− ρH = [H, ρ] . (4.15)

4.4 Quantum ensembles

With this structure, we can follow the same logic that we did in the classical case: we define
equilibrium by having none of the averages of the observables vary with time, which can be
satisfied if we choose an equilibrium density matrix so that ∂tρ = 0. Just as when we were
dealing with Poisson brackets, we accomplish this by having the density matrix be a function
of the Hamiltonian itself, along with any conserved quantities A, ρ(H,A1, . . .), that satisfy
[H,Ai] = 0.

4.4.1 Quantum microcanonical ensemble

We define the microcanonical ensemble, specified by (E,x, N), but enforcing a fixed value
for the ensemble average energy. We choose our density matrix

ρ(E) =
δ(H − E)

Ω(E)
,

where in the energy eigen-basis we can write this as

〈m|ρ|n〉 =
∑
α

pα〈m|ψα〉〈ψα|n〉 =

{
Ω−1 if En = E, and m = n
0 otherwise

(4.16)

The first of those two conditions we recognize as the equivalent of the assumption of equal a
priori probabilities The second, quantum mechanical condition is the assumption of random
a priori phases, in which we don’t get contributions from off-diagonal terms (even if they
have degenerate and correct energies) because we assume the mixed state is in an incoherent
superposition of the basis states. Finally, note that from the normalization condition on the
density matrix, Ω(E) is again just counting the number of (eigen)states of H with the correct
energy E.
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4.4.2 Quantum canonical ensemble

You know what’s coming: Now we’re fixing temperature T = β−1 by putting our quantum
system in contact with a reservoir. Considering the above two assumptions for the combined
system, we find that the density matrix for the system of interest is

ρ(β) =
e−βH

Z(β)
, (4.17)

where the normalization condition on the density matrix leads to the quantum canonical
partition function for N particles,

ZN(β) = Tr
(
e−βH

)
=
∑
n

e−βEn . (4.18)

As one would expect from the above formulas, the expectation value of a physical observable
is given by

〈A〉 = Tr
(
ρ̂Â
)

=
1

Z(β)
Tr
(
Âe−βĤ

)
=

Tr
(
Âe−βĤ

)
Tr
(
e−βĤ

) (4.19)

4.4.3 Quantum grand canonical ensemble

For completeness – and because we’ll see it again soon – in the grand canonical ensemble we
no longer fix the number of particles11. The density matrix is

ρ(β, µ) =
e−βH+βµN

Q
, (4.20)

where the grand canonical partition function is

Q(β, µ) = Tr
(
e−βH+βµN

)
=

∞∑
N=0

eβµNZN(β). (4.21)

4.4.4 Example: Free particle in a box

Suppose we care about the quantum canonical ensemble version of a single particle in a box
of volume V . Working in the coordinate basis, the Hamiltonian is

H =
p2

2m
= − ~2

2m
∇2, (4.22)

which has energy eigenstates |k〉 specified by

〈r|k〉 =
e−k·r√
V
, Ek =

~2k2

2m
. (4.23)

11Microstates with an indefinite number of particles span a Fock space, which is a set of Hilbert spaces
associated with zero or more quantum particles
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What are the allowed k? Assuming for simplicity periodic boundary conditions for a cube
of side length L, we can have k = 2π

L
(lx, ly, lz), where the lα are integers. So, the space of

microstates is enormously larger than in the classical case: rather than 6 degrees of freedom
per particle, one can have countably infinite numbers of states per particle. In the limit
L→∞ the partition function becomes

Z =
∑
k

e−
β~2k2
2m = V

∫
d3k

(2π)3
e−

β~2k2
2m

=
V

(2π)3

(√
2πmkBT

~

)3

=
V

λ3
, (4.24)

for λ = h/
√

2πmkBT , which indeed coincides with our classical calculation when we use the
right (adjusted) phase space measure.

What about the elements of the density matrix itself? We can compute

〈r′|ρ|r〉 =
∑
k

〈r′|k〉e
−βEk

Z
〈k|r〉

=
λ3

V

∫
V

d3k

(2π)3

e−ik·(r−r
′)

V
e−

β~2k2
2m

=
1

V
exp

(
−π (r − r′)2

λ2

)
. (4.25)

What does this mean? The diagonal elements are all 〈r|ρ|r〉 = V −1, the common expectation
that the probability for finding the particle is uniform throughout the box. The off-diagonal
terms are a quantum-mechanical effect, measuring the “spontaneous transition” between
coordinates r and r′, giving a measure of the “intensity” of the wave packet some distance
from the center of the packet. Said another way, the spatial extent of the packet is a measure
of the uncertainty involved in locating the particle position. This quantum mechanical effect
vanishes in the β → 0 limit, as the density matrix elements approach delta functions.

Finally, we can compute the expectation value of the Hamiltonian itself, 〈H〉 = Tr
(
Ĥρ̂
)

.

I’ll spare you the straightforward integrals in class – we’ve already calculated the partition

function Z = Tr
(
e−βĤ

)
, so the result is the last line of:

〈H〉 = Tr
(
Ĥρ̂
)

=
Tr
(
Ĥe−βĤ

)
Tr
(
e−βĤ

)
= − ∂

∂β
ln Tr

(
e−βĤ

)
=

3

2
kBT. (4.26)

Utterly expected.
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4.4.5 Example: An electron in a magnetic field

Suppose we care about the quantum canonical ensemble version of a single electron in a
magnetic field. The election has spin ~σ̂/2 and a magnetic moment µB = e~

2mc
(nothing to do

with the chemical potential; it’s just standard notation to use µ here, too), where σ̂ is the
Pauli spin operator.

When we apply a magnetic field, B, the electron can have either spin up or spin down.
If we take the applied field to be along ẑ, the configurational part of the Hamiltonian is

Ĥ = −µBσ̂ ·B. (4.27)

Life is easier when we work in the basis in which the Hamiltonian is diagonal, i.e.,

Ĥ = −µBBσ̂z, (4.28)

where

σ̂x =

(
0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
, σ̂z =

(
1 0
0 −1

)
. (4.29)

From this it is straightforward to calculate the density matrix:

ρ̂ =
e−βĤ

Tr
(
e−βĤ

)
=

1

eβµBB + e−βµBB

(
eβµBB 0

0 e−βµBB

)
, (4.30)

from which we can calculate, e.g., the expectation value for σz:

〈σz〉 = Tr (ρ̂σ̂z) =
eβµBB − e−βµBB

eβµBB + e−βµBB
= tanh (βµBB) , (4.31)

an expression I’m quite sure you’ve seen in other classes.

4.5 Quantum indistinguishability

4.5.1 Two identical particles

Suppose we were to write down a simple two-particle Hamiltonian, for two particles of equal
mass and with an interaction potential that depended only on the relative separation:

H(1, 2) =
p2

1

2m
+
p2

2

2m
+ V (|r1 − r2|).

Clearly this Hamiltonian is symmetric under the exchange of particle label,H(1, 2) = H(2, 1).
Classically, our labeling of particles is meaningful (think, for instance, of running a computer
simulation of a system of classical particles, in which there are Monte Carlo exchanges of
particle identity that can take place), but for identical quantum mechanical particles these
labels are arbitrary and convey no physical meaning.
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For instance, the probability of finding two identical particles at positions r1 and r2 is
given by |ψ(r1, r2)|2 = |ψ(r2, r1)|2. As long as the wavefunction is single-valued this leads to
two distinct possibilities12:

ψ(r1, r2) =

{
ψ(r2, r1) for bosons
−ψ(r2, r1) for fermions

. (4.32)

4.5.2 N identical particles

Starting with a wavefunction for N particles, ψ(r1, . . . , rN), we generalize the above by
introducing a permutation operator P , of which there are N ! possible permutation operators
we might consider for our set of particles. We’ll adopt the notation

Pψ(r1, . . . , rN) =

{
ψ(r1, . . . , rN) for bosons

(−1)Pψ(r1, . . . , rN) for fermions
(4.33)

to represent the two classes of Hilbert spaces we might find ourselves in. Here we take (−1)P

to represent the parity13 of the permutation under question: if P can be represented by an
even number of pairwise particle exchanges then (−1)P = 1, and if it can be represented by
an odd number of pairwise exchanges the (−1)P = −1.

Note that the Hamiltonian for the particles, H, must be symmetric: PH = H, but the
Hamiltonian can admit eigenstates of different symmetries under the action of the permuta-
tion operator. The same Hamiltonian will thus allow eigenstates of either total symmetry or
total anti-symmetry: the statistics one want to study must be specified independently of the
Hamiltonian, and so one studies only a subspace (either the fermionic subspace, in which
eigenstates are anti-symmetric, or the bosonic subspace, in which eigenstates are symmetric)
of the total Hilbert space. Let’s see a convenient way of representing these subspaces.

4.5.3 Product states for non-interacting particles

We consider an N -particle Hamiltonian which is just a collection of single-particle Hamilto-
nians14 for free particles in a box of volume V :

H =
N∑
α=1

p2
i

2m
=

N∑
α=1

− ~2

2m
∇2
α. (4.34)

Each of the single-particle Hamiltonians can be diagonalized by writing it in the energy
basis, |kα〉 with energy ~2k2

α/(2m), and we will build our N -particle wavefunction out of
these one-particle eigen-pieces.

12Because the square of the exchange operator must be the identity matrix. For single-valued functions
this restriction means that there can only be a complex phase shift under the operation of a single application
of the exchange operator, so the square being the identity means the phase shift can only be 0 (bosons) or
π (fermions). You may have heard, though, of anyons! These have multi-valued wavefunctions, and in two
dimensions one can find other allowed statistics without this constraint on the value of the phase shift.

13In Pathria’s notation, what I will eventually write as ηP is denoted δP = (±1)[P ]

14“Hamiltonia”?
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We define a product state as

|k1, . . . ,kN〉× ≡ |k1〉|k2〉 · · · |kN〉, (4.35)

where in the coordinate representation the product state is

〈r1, . . . , rN |k1, . . . ,kN〉× =
1

V N/2
exp

(
−i
∑
α

kα · rα

)
, (4.36)

and of course

H|k1, . . . ,kN〉× =

(∑
α

~2k2
α

2m

)
|k1, . . . ,kN〉×. (4.37)

These product states are very convenient to work with, but they are too general! That is,
they are appropriate for distinguishable particles, but for indistinguishable particles they do
not have the correct symmetry for either bosons or fermions.

To show how we can compactly write either fermionic or bosonic states, let’s start by
defining a symbol

η =

{
1 for bosons
−1 for fermions

, (4.38)

and we will write things like |{k}〉+ and |{k}〉− for bosonic and fermionic states, respectively.

Fermionic eigenstates

We build the set of possible fermionic states by summing over all possible permutations of
the product state, but including the appropriate anti-symmetrizing factor:

|k1, . . . ,kN〉− =
1√
N−

∑
P

(−1)PP |k1, . . . ,kN〉×, (4.39)

where N− = N ! is a factor that ensures proper normalization of our fermionic eigenstate.
Because of the anti-symmetrization, if there are any value kα appears more than once the
whole eigenstate vanishes, and so anti-symmetrization is only possible if there are N distinct
kα. This is why we know there are as many distinct terms in the sum as there are particles,
and thus why N− = N !. For example, a three-particle anti-symmetrized state is15

|123〉− =
|123〉× + |231〉× + |312〉× − |213〉× − |321〉× − |132〉×√

6
(4.40)

Bosonic eigenstates

Formally, we write the bosonic states similarly, as sum of possible permutations of the product
state with a factor of (+1)P = 1 accounting for the parity of each permutation:

|k1, . . . ,kN〉+ =
1√
N+

∑
P

(+1)PP |k1, . . . ,kN〉×. (4.41)

15for convenience, let k1 = 1, etc.
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Bosons, though, are allowed to have states in which the same kα appears multiple times, so
computing the normalization factor is slightly more complicated. To see this, consider the
bosonic state |121〉+ (i.e., a state in which there are two identical k and one unlike k. We
see that

|121〉+ =
1√
N+

(|112〉× + |121〉× + |211〉× + |112〉× + |121〉× + |211〉×)

=
2√
N+

(|112〉× + |121〉× + |211〉×) , (4.42)

so for proper normalization of |121〉+ we need N+ = 12. The combinatorial generalization is
that if each k is repeated nk times in the N -particle bosonic state, then N+ = N !

∏
k nk!.

We can see this by requiring

1 = +〈{k}|{k}〉+ =
1

N+

∑
P,P ′

× 〈P ′{k}|P{k}〉×

=
N !

N+

∑
P

× 〈{k}|P{k}〉×, (4.43)

but the 〈{k}|P{k}〉 vanish by orthogonality unless the permuted set of wavevectors matches
the original, which happens nk! times for each repeated k. Thus,

1 =
N !
∏

k nk!

N+

⇒ N+ = N !
∏
k

nk!. (4.44)

Compact notation

Actually, though, since for a fermionic state nk can only be zero or one (again, the antisym-
metrization gets rid of any states with multiply repeated k), we can combine the bosonic
and fermionic notation above into:

|k1, . . . ,kN〉η =
1√
Nη

∑
P

ηPP |k1, . . . ,kN〉×. (4.45)

For both bosons and fermions Nη = N !
∏

k nk!, and note that the states end up being
uniquely specified by the set of occupation numbers, nk, with the constraint∑

k

nk = N. (4.46)

4.6 The canonical ensemble density matrix for non-

interacting identical particles

We first write down the canonical density matrix for non-interacting sets of identical parti-
cles (and from it obtain the canonical partition function). This section is a bit of a technical
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calculation; at the end we will understand where the 1/N ! in the classical partition func-
tion comes from, and we will see how the quantum statistics of non-interacting identical
particles are approximately equivalent to introducing either attractive or repulsive classical
interactions which are felt over distances comparable to the thermal de Broglie wavelength.

In the position basis this is 〈{r′}|ρN |{r}〉η, where we know ρN will be diagonal in the
energy basis:

〈r′1, . . . , r′N |ρN |r1, . . . , rN〉η =
∑

{k}restricted

[
1

Nη

∑
P,P ′

ηPηP
′〈{r′}|P ′ {k}〉ρ({k})〈P {k}|{r}〉

]
.

(4.47)
The density matrix is (c.f. Eq. 4.17)

ρN({k}) =
exp

(
−β
∑N

α=1
~2k2α
2m

)
ZN

, (4.48)

and the “restricted” sum above makes sure that every unique indistinguishable particle state
appears exactly once (correctly accounting for either bosonic or fermionic statistics). That
restriction is, in fact, a bit cumbersome, so it is more convenient to sum over all {k} and
then correct for any over-counting. Since the states are specified by the occupation numbers,
and since (again) for fermions the ηPηP

′
cancels all contributions from terms with nk > 1,

we can do this via ∑
{k}restricted

=
∑
{k}

∏
k nk!

N !
(4.49)

Making this change (combined with the factor of 1/Nη = 1/(N !
∏

k nk!)), gives

〈{r′}|ρN |{r}〉η =
∑
{k}

1

(N !)2

∑
P,P ′

ηPηP
′

ZN
e

(
−β
∑N
α=1

~2k2α
2m

)
〈{r′}|P ′ {k}〉〈P {k}|{r}〉. (4.50)

We reorder the sums and replace the sum over {k} with an integral to get

〈{r′}|ρN |{r}〉η =
1

(N !)2ZN

∑
P,P ′

ηPηP
′
∫ ( N∏

α=1

V d3kα
(2π)3

)
e

(
−β ~2k2α

2m

)
e−i

∑N
α (kPα·rα−kP ′α·r′α)

V N
.

(4.51)
Perhaps you feel that we have made things worse rather than better; fortunately, we are

undeterred. Let’s introduce a new label γ = Pα, α = P−1γ to keep track of permutations.
We’ll make use of the fact that for functions / operators / variables f and g we can sum over
indices

∑
α f(Pα)g(α) =

∑
γ f(γ)g(P−1γ); this allows us to focus on a particular wavevector:

〈{r′}|ρN |{r}〉η =
1

(N !)2ZN

∑
P,P ′

ηPηP
′
N∏
α=1

∫
d3kα
(2π)3

e
−ikα·

(
rP−1α−r

′
(P ′)−1α

)
−β ~2k2α

2m . (4.52)

The Gaussian integrals in this expression give∫
d3kα
(2π)3

e
−ikα·

(
rP−1α−r

′
(P ′)−1α

)
−β ~2k2α

2m =
1

λ3
exp

(
− π

λ2

(
rP−1α − r′(P ′)−1α

)2
)
. (4.53)
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Using this result and setting µ = P−1α we get

〈{r′}|ρN |{r}〉η =
1

ZNλ3N(N !)2

∑
P,P ′

ηPηP
′
exp

(
− π

λ2

N∑
µ=1

(
rµ − r′(P ′)−1Pµ

)2
)
. (4.54)

The last step is to do one of the two sums over the permutations. We define Q = (P ′)−1P ,
and since ηP = ηP

−1
we can write ηPηP

′
= η(P ′)−1P = ηQ. With this, and summing over one

set of N ! permutations, we arrive at

〈{r′}|ρN |{r}〉η =
1

ZNλ3NN !

∑
Q

ηQ exp

(
− π

λ2

N∑
µ=1

(
rµ − r′Qµ

)2

)
. (4.55)

We can finally get the canonical partition function by enforcing the normalization of the
density matrix:

Tr (ρ) = 1 ⇒
∫ N∏

α=1

d3rα〈{r}|ρN |{r}〉η = 1 (4.56)

⇒ ZN =
1

λ3NN !

∫ N∏
α=1

d3rα
∑
Q

ηQ exp

(
− π

λ2

N∑
µ=1

(rµ − rQµ)2

)
. (4.57)

We see that the quantum mechanical partition function has within it a sum over the N !
permutations of identical particles, the classical result,

ZN =
1

N !

(
V

λ3

)N
,

corresponds to the term in which there are no exchanges, that is, where Q is the identity.
We see that there are lots of other terms involving products of terms like

exp
(
− π

λ2
(r1 − r2)2

)
,

but as T →∞, λ→ 0 and these quantum corrections vanish.

4.6.1 Statistical interparticle potential

Before we try to evaluate Eq. 4.57, let’s pause to think about perturbations away from the
infinite temperature limit. Clearly the lowest order correction from the classical canonical
partition function involves permutations which just exchange two particles. So, let’s consider
the simplest possible (non-trivial) case, where N = 2 and

∑
Q is a sum over the identity and

either a symmetric or antisymmetric exchange of particles. The partition function is

Z2 =
1

2!

(
V

λ3

)2 [
1 +

η

23/2

λ3

V

]
, (4.58)
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Figure 4.1: The effective statistical interparticle potential is attractive (bosons)
or repulsive (fermions) The solid line corresponds to vs in Eq. 4.60 with η = +1, as in
the case of bosons, and the dashed line corresponds to the case of η = −1, as for particles
with fermionic statistics.

and the diagonal elements of the density matrix are

〈r1, r2|ρ2|r1, r2〉 ≈
1

V 2

[
1 + η exp

(
−2π

(r1 − r2)2

λ2

)]
. (4.59)

This tells us that when the interparticle separation is comparable to λ the probability
density for the two non-interacting identical particles is different from the classical result of
1/V 2, on account of the statistics of identical particle permutations. For η = 1 there is a
greater likelihood of finding the particles close together, and for η = −1 there is a reduction
in the probability (all the way down to zero for |r1 − r|2 → 0).

We can express these different statistical correlations by pretending that we have classical
particles interacting according to a statistical interparticle potential vs(r). We’ll see these
kinds of statistical potentials again later in the course; the idea is that the Boltzmann
weight associated with a particular separation should be exactly equal to change in the pair
correlation away from the infinite temperature limit above:

exp (−βvs(r)) = 1 + η exp

(
−2π

r2

λ2

)
. (4.60)

This effective potential is shown in Fig. 4.1, again, it is a classical potential that mimics
the effect of quantum correlations at high temperatures.

4.7 The grand canonical ensemble for non-interacting

identical particles

Above we worked in the position basis; this let us see the relationship between the quantum
and classical partition functions nicely, and demonstrated the traditional resolution to Gibbs’
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paradox for identical particles16. But explicitly calculating the sum over allowed permutations
in Eq. 4.57 for either Bosonic or Fermionic states is... daunting, to say the least. We can first
make our life a little bit easier by working with the canonical partition function in the basis
for which the Hamiltonian is diagonal. Here

ZN = Tr
(
e−βHN

)
=

∑
{k}restricted

η 〈{k}|e−β
∑N
α=1 Ekα |{k}〉η. (4.61)

We’ve switched from the particular single-particle Hamiltonian with only kinetic energy in
the last section to arbitrary single-particle Hamiltonians that have some set of energy levels
characterized by energies Ekα (so, these could be free particles in a box, or quantum harmonic
oscillators, etc.). We still have this restriction on the {k}, which we work around as follows.

We recall that the allowed states can be specified by the occupation numbers, nk, for
each k:

ZN =
∑

{k}restricted

e−β
∑N
α=1 Ekα

=
∑

{nk}restricted

exp

(
−β
∑
k

Ekαnk

)
. (4.62)

Furthermore, we have gone from sums over symmetry-restricted sets of k to restricted sums
over the occupation numbers:∑

k

nk = N, and nk =

{
0 or 1 fermions
0, 1, 2, . . . bosons

(4.63)

Performing this restricted sum over occupations numbers is still difficult, so we move to
the grand canonical ensemble:

Qη =
∞∑
N=0

zNZN =
∞∑
N=0

eβµN
∑

{nk}restricted

exp

(
−β
∑
k

Ekαnk

)
(4.64)

=
∑
N=0

 ∑
{nk}restricted

∏
k

exp [−β (Ek − µ)nk]

 , (4.65)

where the subscript η reminds us that the restriction on the sum implicitly depends on the
quantum statistics in question. At last we see the utility of moving to the grand canonical
ensemble: the double summation above – first over a restricted set of occupation numbers
at fixed N , and then over all N – is equivalent to simply summing over all values of the
different occupation numbers independently for each k.

We now have
Qη =

∑
{nk}η

∏
k

exp [−β (Ek − µ)nk] , (4.66)

16i.e., now we have recovered both the factors of h and N ! we introduced in an ad-hoc way earlier
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where {nk}η reminds us that the sum over occupation numbers is either
∑1

nk=0 for fermions
or
∑∞

nk=0 for bosons. We can evaluate the sums over the occupation numbers independently
for each k above; explicitly, we can write

Qη =
∑

nk1
,nk2

,...

[(
ze−βEk0

)n0
(
ze−βEk1

)n1 · · ·
]

=

[∑
n0

(
ze−βEk1

)n0

][∑
n1

(
ze−βEk1

)n1

]
· · · (4.67)

for fermions this just gives us two terms per k, and for bosons we get a simple geometric
series as long as that series converges :

Q− =
∏
k

[1 + exp (βµ− βEk)] , (4.68)

Q+ =
∏
k

[1− exp (βµ− βEk)]−1 , with Ek − µ > 0 ∀k. (4.69)

Thermodynamically we usually want to take derivatives of the log of the above expressions,
so we combine them compactly as

logQη = −η
∑
k

ln [1− η exp (βµ− βEk)] . (4.70)

From this we can calculate the usual suspects. For instance, we typically want to know how
many particles we actually have for a given value of the chemical potential. Recall that
classically we know that the unconditional probability of finding N particles in the system
is

p(N) =
eβµNZN
Q

,

and here we have products of independent single-particle states. So, we very similarly can
write down the probability of having a particular set of occupation numbers:

pη ({nk}) =
1

Qη

∏
k

exp [−β (Ek − µ)nk] . (4.71)

From this we can pull down the average occupation number of a particular state with energy
Ek, as

〈nk〉η = − ∂ lnQη
∂ (βEk)

=
1

exp (βEk − βµ)− η
. (4.72)

From this the average number of particles at fixed µ is

Nη =
∑
k

〈nk〉η =
∑
k

1

z−1eβEk − η
(4.73)

and the average energy is

Eη =
∑
k

Ek 〈nk〉η =
∑
k

Ek

z−1eβEk − η
(4.74)
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4.8 Ideal quantum gases

In the rest of the chapter we will specialize the above results to the case of ideal quantum
gases, looking at some of the thermodynamic properties of both ideal Fermi and Bose gases.
Before we dive into the details, it is worth saying a few words about what we will get out of
this exploration. Classically, the ideal gas is a prime example we keep coming back to, and it
provides a starting point for understanding real gases, but it’s a pretty poor starting point
for just about any other system (solids, dense liquids, etc).

The quantum ideal gas turns out to be much more applicable. Non-interacting systems
of bosons are surprisingly accurate descriptors of photons (as one could anticipate from our
earlier discussion of blackbody radiation), phonons (and giving insight into the heat capacity
of solids), as well as actual dilute gases of bosons. You might be surprised to learn that the
non-interacting approximation for fermions also apply to a range of systems! For instance,
electrons are charged, and the interactions between electrons in an atom, or a material, always
make a large contribution to the energy. Nevertheless, a gas of non-interacting fermions is
a powerful description of atoms, metals, insulators, neutron stars, etc. Not a free gas of
fermions: the trick is that collections of interacting fermions often act like collections of
non-interacting fermions sitting in a modified external potential17.

To specialize to (non-relativistic) idealized gases, we make the specific choice for the
energies Ek = ~2k2/(2m), where the energy levels have a degeneracy g associated with the
spin s of the particles, g = 2s + 1, and where

∑
k → V

∫
d3k/(2π)3. The evaluation of the

grand canonical partition function gives us the following results for the pressure, number
density, and energy density:

βPη =
lnQη
V

= −ηg
∫

d3k

(2π)3
ln
[
1− ηze−β

~2k2
2m

]
, (4.75)

nη =
Nη

V
= g

∫
d3k

(2π)3

(
z−1eβ

~2k2
2m − η

)−1

, (4.76)

εη =
Eη
V

= g

∫
d3k

(2π)3

~2k2

2m

(
z−1eβ

~2k2
2m − η

)−1

. (4.77)

With a little more work we can manipulate these expressions into a more manageable form.
For what’s to come, let’s define the following families of functions that are closely related to
what are typically called Bose-Einstein and Fermi-Dirac integrals:

f ηm(z) ≡ 1

(m− 1)!

∫ ∞
0

dx
xm−1

z−1ex − η
; (4.78)

these functions are closely related to the polylogarithm18. We’re going to want m to take
non-integer values, so recall that we really mean the gamma function above19.

17See Sethna’s “Statistical Mechanics: Entropy, Order Parameters, and Complexity” for a slightly ex-
panded discussion of this point. If anyone want to talk about Landau-Fermi liquid theory that could be a
cool presentation topic!

18The polylogarithm is defined by Lim(z) =
∑∞
α=1

zα

αm (plus the analytic continuation in the complex
plane). Note that fηm(z) = ηLim(ηz).

19Γ(m) = (m− 1)!, with, e.g., (1/2)! =
√
π/2, etc.
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With this definition in hand, let’s make the obvious change of variables in the above
thermodynamic expressions to x = β~2k2/(2m), i.e., k = 2

√
π

λ
x1/2. To show an explicit

calculation, we substitute this into the equation for the pressure, integrate by parts, and end
up with a very compact expression:

βPη = = −ηg
∫

d3k

(2π)3
ln
[
1− ηze−β

~2k2
2m

]
= − 2ηg

λ3
√
π

∫ ∞
0

dx x1/2 ln
(
1− ηze−x

)
=

4g

3λ3
√
π

∫
dx

x3/2

z−1ex − η
=

g

λ3
f η5/2(z). (4.79)

Similarly, we can now compactly write the three thermodynamic expressions above as

βPη =
g

λ3
f η5/2(z)

nη =
g

λ3
f η3/2(z) (4.80)

εη =
3

2
Pη.

Beautiful. These equations are a complete description of the thermodynamics of ideal Fermi
and Bose gases, but of course we usually want equations of state where P is a function of
the density and the temperature; here we have implicit relations between both P and n with
the fugacity. We would like, therefore, to invert the middle equation20 and know z in terms
of the density, so we need to understand the behavior of the f ηm(z).

4.8.1 High-temperature and low-density limit of ideal quantum
gases

The simplest limit to consider – in which we can continue to treat Fermions and Bosons
simultaneously – is the high-T , small-n limit in which z is small. For small z one can perform
a systematic expansion of the integral defining f ηm(z) (and you should step through this
exercise!), but for brevity we will use the fact noted in footnote 18, by which we can write

f ηm(z) = ηLim(ηz) =
∞∑
α=1

ηα+1 z
α

αm
= z + η

z2

2m
+
z3

3m
+ · · · (4.81)

We see that for z � 1, f ηm(z) � 1 and hence nη and Pη are all small, too – the calculation
is nicely self-consistent. We are now in a position to find a relationship for z in terms of n
(rather than the current n in terms of z in Eq. 4.80): we rearrange Eq. 4.80 as

z = d− η z2

23/2
− z3

33/2
− · · · , (4.82)

20you might say that in picking a name for a complicated integral we’ve just parameterized our ignorance,
without gaining any understanding yet
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where we define the degeneracy factor d = nηλ
3/g, which is another way of characterizing

the regime in which quantum effects become important (i.e., when nηλ
3 > g, quantum

mechanical effects become crucial to keep track of). From here, we can compute z as a
power series to any order in n (plus corrections of higher order) by recursively substituting
lower order solutions in. Explicitly, to lowest order z ≈ d. To improve this to next order, we
substitute it into the power series above, getting

z ≈ d− η

23/2
d2.

To get the next order term, we substitute this improved approximation into the series (keep-
ing all terms up to third order), giving

z ≈ d− η

23/2

(
d− η

23/2
d2
)2

− 1

33/2

(
d− η

23/2
d2
)3

≈ d− η

23/2
d2 +

(
1

4
− 1

33/2

)
d3 − · · · ,

etc. The point is not (necessarily, unless you want to calculate certain precise quantities)
to work out the numerical values of these prefactors, but rather than we can systematically
and self-consistently rearrange nη(z) into z(nη) in the limit we’re considering. We can then
substitute this power series back into Eq. 4.80 and get the equation of state for our high-
temperature, low-density quantum gas:

Pη = nηkBT

(
1− η

25/2

(
nηλ

3

g

)
+

[
1

8
− 2

35/2

](
nηλ

3

g

)2

+ · · ·

)
(4.83)

We’ll see in the next chapter that this is our first look at a virial expansion of the equation
of state.

4.9 Ideal Bose gases

At higher temperature we were able to work out a power series representation for the equation
of state for a Bose gas; as the temperature is reduced and d = n+λ

3/g grows that approach is
no longer useful and we must work directly with the f ηm(z) functions. Recall that the average
occupation number of a particular energy eigenstate, Eq. 4.72, is

〈nk〉+ =
1

exp [β (Ek − µ)]− 1
,

which clearly cannot be a negative number. This means that µ < Ek for any choice of k;
given our investigation of Ek = ~2k2/(2m) here that means that µ < 0 and hence 0 ≤ z ≤ 1.
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Figure 4.2: Fraction of the normal phase and the condensed phase in an ideal Bose
gas. Since the density of excited states n∗ = gf+

3/2(1)/λ3 ∝ T 3/2, we can schematically draw
the figure as shown.

Thus, since the f+
m(z) are monotonically increasing functions for 0 ≤ z ≤ 1, we see that

the density of excited states for the ideal Bose gas is bounded. From Eq. 4.80:

n+ =
g

λ3
f+

3/2(z) ≤ g

λ3
f+

3/2(1), (4.84)

where21

f+
3/2(1) = 1 +

1

23/2
+

1

33/2
+ · · · ≈ 2.612.

Since there is a bound on the number of excited states, what happens if we take a fixed
number of particles in a fixed volume and start cooling them down? At high temperatures,
the bound above is not relevant and the density of excited states is the same as the number
density. Writing out the factors of λ above, though, we can see that there is a critical
temperature at which the bound becomes relevant:

n+λ
3

g
=
n+

g

(
h√

2πmkBTc

)3

= f+
3/2(1)

⇒ Tc(n) =
h2

2πmkB

(
n

gf+
3/2(1)

)2/3

. (4.85)

Below this temperature the fugacity is stuck22 at z = 1; the limiting density of excited states,
n∗ = gf+

3/2(1)/λ3, is less than the total number density, and the rest of the particles are forced
to occupy the k = 0 zero-energy ground state. This is Bose-Einstein condensation: having
a macroscopically large number of particles accumulating in just one single-particle state.
The schematic growth of the number of particles in the ground state at low temperature is
shown in Fig. 4.2.

21Note that f+m(1) = ζ(m), the Reimann zeta function
22Really, if N0 is the number of particles in the ground state of E = 0, z = N0/(N0 + 1)

105



4.9.1 Pressure

We now turn to the pressure of the low-temperature phase of this system. For T < Tc we
have z = 1, and our thermodynamic expression given earlier gives us

βP+ =
g

λ3
f+

5/2(1) ≈ 1.341
g

λ3
, (4.86)

a pressure which is independent of n and proportional to T 5/2. We can use our expression
for the critical temperature to note, by the way, that at Tc we have

P (Tc)V =
f+

5/2(1)

f+
3/2(1)

(NkBTc) ≈ 0.5134NKBTc, (4.87)

and we see that right at the transition the pressure of an ideal Bose gas is about half of what
would be expected from a classical gas. More generally, for T < Tc we can write

P (T ) =

(
T

Tc

)5/2

P (Tc) =
f+

5/2(1)

f+
3/2(1)

N −N0

V
kBT, (4.88)

showing that only the excited particles contribute to the pressure23.

4.9.2 Heat capacity

Let’s look a little closer at the transition from high- to low-temperature Bose gases by
studying the heat capacity. Looking again at Eq. 4.80 to get an expression for the energy,
we see the heat capacity (at constant volume and particle number) is

CV,N =
∂Eη
∂T

∣∣∣∣
V,N

=
15V gkB

4λ3
f+

5/2(z) +
3V gkBT

2λ3

df+
5/2(z)

dz

dz

dT
. (4.89)

Note that the first term contributes for the entire range of T , but the second term does not:
z only appreciably varies above the critical temperature, so the second term only contributes
for T > Tc. What are the limits here? At low temperatures we set z = 1, ignore the second
term, and have

CV =
15V gkB

4λ4
f+

5/2(1) ∼ T 3/2, at low T.

At high temperatures we know z < 1 and dz/dT < 0, and from monotonicity that
f+

5/2(z) < f+
5/2(1), so we expect that the heat capacity has a maximum at Tc. Let’s see this

explicitly by evaluating the derivatives in the second term above to get our full expression
for the heat capacity. The first one is straightforward. Using the definition in footnote 18,
we have

d

dz
f+
m(z) =

1

z
f+
m−1(z),

23Which makes sense: only the excited fraction of the Bose gas has finite momentum
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so our heat capacity is

CV,N =
3V gkBT

2λ3

(
5

2T
f+

5/2(z) +
f+

3/2(z)

z

dz

dT

)
. (4.90)

All that remains is to find how the fugacity changes with temperature. We straightforwardly
do this by invoking our condition of fixed particle number in Eq. 4.80:

dN

dT

∣∣∣∣
V

= 0 ⇒ 0 =
gV

λ3

(
3

2T
f+

3/2(z) +
f+

1/2(z)

z

dz

dT

)

⇒ dz

dT
= − 3z

2T

f+
3/2(z)

f+
1/2(z)

. (4.91)

Substituting this in, we get

CV,N =
3V gkB

2λ3

5f+
5/2(z)

2
− 3

2

(
f+

3/2(z)
)2

f+
1/2(z)

 . (4.92)

Finally, we put all of this together. At low temperatures the heat capacity Cv ∼ T 3/2.
At high temperatures we can expand the power series in z and not that the heat capacity is
larger than the classical value:

CV /(NkB) =
3

2

(
1 +

nλ3

27/2
+ · · ·

)
.

What about at the transition, or close to it, when z < 1 but is not so small that the series
expansion is helpful? We can rearrange our expression for the particle number, together with
the expression for Tc, to find that to lowest order in t = (T − Tc)/Tc, when we approach Tc
from above, that z ≈ 1−Bt2, for some constant B that we could work out if we wanted to.
Close to the critical temperature we can expand the polylog functions to get something of
the form

CV,n =
15V gkB

4λ3
f+

5/2(z)− bT − Tc
Tc

at low T, but T > Tc. (4.93)

Figure 4.3: Heat capacity of an ideal Bose Gase (note the cusp at Tc.)
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This is a heat capacity which is continuous at Tc (i.e., it will match the value from the
T < Tc calculation, from the first term), but which has a discontinuous24 derivative! The
behavior is schematically shown in Fig. 4.3. Now, in physics we’re used to dealing with
functions that are smooth and well-behaved; where do these sort of discontinuities come
from? In the following chapter we’ll more systematically look at interacting systems and
phase transitions. First, we wrap up the chapter with a quick look at degenerate Fermi
gases.

4.10 Ideal Fermi gases

Just as in the case of the ideal Bose gas, when d = n−λ
3/g approaches unity we can no

longer usefully rely on the power series expansions of the f ηm(z) in Eq. 4.80, and we must
start working with the full set of equations there. In the limit that T → 0 we can look at
the average fermi occupation number for states associated with k:

〈nk〉− =
1

eβ(Ek−µ) + 1
=

{
1 Ek < µ
0 otherwise

. (4.94)

At T = 0 this is just a step function, so at zero temperature all of the single-particle states
up to Ek = εF , the fermi energy, are completely filled, forming the so-called fermi sea. The
corresponding wavenumber is25 referred to as the fermi wavenumber, kF . For an ideal gas
with Ek = ~2k2/(2m), these are related by

N =
∑
|k|≤kF

g = gV

∫
k≤kf

d3k

(2π)3
=
gV

6π2
k3
F , (4.95)

so

kF =

(
6π2n

g

)1/3

, εF =
~2

2m

(
6π2n

g

)2/3

(4.96)

Schematically the behavior of the occupation numbers are shown in Fig. 4.4.
We need to do some work to investigate the finite-temperature behavior (i.e., for large z).

Here we follow Sommerfeld’s approach, and first take Eq. 4.78 and perform an integration
by parts:

f−m(z) =
1

m!

∫ ∞
0

dx xm
d

dx

(
−1

ex−ln z + 1

)
, (4.97)

where we’ve just written z−1 as e− ln z for convenience. We then say that we know the fermi
occupation itself changes very rapidly from 1 to zero across εF , so the derivative above

24Or does it? I’ve been a bit sloppy here, going back and forth about whether below Tc z = 1 or
z = (N0)/(N0 + 1). In fact, for any finite N the cusp will be smoothed out. Many more details on this
to come!

25shockingly
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Figure 4.4: Fermi occupation numbers The dotted line shows the zero-temperature limit,
and the solid curve shows the finite temperature result.

must be sharply peaked. We expand about this peak of the derivative (which occurs when
x = ln z), by setting x = ln z+ t and taking the new integration variable −∞ ≤ t ≤ ∞. This
trick gives us:

f−m(z) ≈ 1

m!

∫ ∞
−∞

dt (ln z + t)m
d

dt

(
−1

et + 1

)
=

1

m!

∫ ∞
−∞

dt
∞∑
α=0

[(
m

α

)
tα (ln z)m−α

]
d

dt

(
−1

et + 1

)
=

(ln z)m

m!

∞∑
α=0

m!

α!(m− α)!
(ln z)−α

∫ ∞
−∞

dt tα
d

dt

(
−1

et + 1

)
. (4.98)

The last type of integral appearing above can be manipulated (exploiting the anti-symmetry
of the integrand under exchange of sign of t, etc.) to give:

1

α!

∫ ∞
−∞

dt tα
d

dt

(
−1

et + 1

)
=

{
0 if α is odd

2
(α−1)!

∫∞
0
dt t

α−1

et+1
if α is even

, (4.99)

and in that last expression we recognize an expression which is just 2f−α (1). So, we combine
the above two equations, and exploit the fact that other people have computed the integrals
associated with f−m(1), to give the Sommerfeld expansion:

lim
z→∞

f−m(z) =
(ln z)m

m!

∞∑
αeven

2f−α (1)
m!

(m− α)!
(ln z)−α

=
(ln z)m

m!

(
1 +

π2

6

m(m− 1)

(ln z)2
+ · · ·

)
. (4.100)
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To first approximation, explicitly, we have

f−5/2(z) ≈ 8 (ln z)5/2

15
√
π

(
1 +

5π2

8 (ln z)2 + · · ·
)

f−3/2(z) ≈ 4 (ln z)3/2

3
√
π

(
1 +

π2

8 (ln z)2 + · · ·
)

(4.101)

f−1/2(z) ≈ 2 (ln z)1/2

√
π

(
1− π2

24 (ln z)2 + · · ·
)

We can now plug these results into Eq. 4.80. When z � 1 the degeneracy factor is

n−λ
3

g
= f−3/2(z) ≈ 4 (ln z)3/2

3
√
π

(
1 +

π2

8 (ln z)2 + · · ·
)
. (4.102)

The leading term reproduces our earlier result for the fermi energy:

βεF =
β~2

2m

(
6π2n

g

)2/3

=

(
3nλ3

4
√
π

)2/3

= ln z (4.103)

which gives a chemical potential of

µ = kBT ln z ≈ εF

(
1− π2

12

(
kBT

εF

)2
)
. (4.104)

Note that this is positive at low temperatures and negative at high temperatures, suggesting
that the chemical potential changes sign at a fermi temperature TF ∼ εF/kB. The energy
density E/V = 3P/2, and the low-temperature pressure is

βP− =
g

λ3

8 (ln z)5/2

15
√
π

(
1 +

5π2

8 (ln z)2 + · · ·
)

(4.105)

With the help of our previous expression (relating the fermi energy to ln z, for instance), we
can write this as a power series in temperature, as

P− =
2

5
εFn−

(
1 +

5π2

12

(
kBT

εF

)2

+ · · ·

)
. (4.106)

Unlike a classical gas, the degenerate fermi gas has finite pressure (and internal energy) even
at zero temperature. Additionally, the heat capacity,

CV
NkB

=
1

NkB

∂E

∂T
=
π2

2

kBT

εF
(4.107)

varies as the first power of temperature at low T (something which is quite general in fermi
gases, regardless of the dimension). This reflects the fact that only a small fraction (of order
T/TF ) of the particles are excited at temperature T , and most of the particles do not feel the
effects of the finite temperatures. Each of those excited particles gains about kBT of energy,
hence CV ∼ (T/TF ). Additionally, we see that the heat capacity at low temperature is much
smaller than the classical expectation of 3NkN/2.
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Chapter 5

Interacting systems

So far we have almost exclusively1 focused on ideal systems in which the units compos-
ing the system did not interact with each other via interparticle potentials. This simpli-
fication helped us more clearly understand the structure of our statistical descriptions of
macroscopic systems (and, helpfully, let us solve everything analytically) – and for quantum
mechanical systems we even saw that non-interacting Bose and Fermi systems can exhibit
rich/interesting behaviors.

However. Interactions are responsible for the amazing variety of phases of matter and
material behaviors! Since most physical systems that we encounter cannot be described
without considering interactions, in this chapter and the next we’ll start building up ways of
incorporating interactions into our statistical mechanical formalism. This chapter will focus
on systematic expansions, in which an idealized, non-interacting system serves as a useful
starting point. Implicitly, for instance, throughout the next sections you can imagine that
we’re trying to describe the properties of a dilute gas.

5.1 From cumulant expansions...

5.1.1 Moment expansion

Let’s return to the idea of a classical system2 and start with a general Hamiltonian in the
absence of an external potential:

H =
N∑
i=1

p2
i

2m
+ U ({r}) ,

where we’ve written a general interaction potential, U , which could be an arbitrary function
involving the spatial coordinates of the particles.

1With the exception of introducing some interactions in Chapter 3 to get to the Boltzmann equation
2With our corrected phase-space measure
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In the canonical ensemble the partition function would be

Z(N, V, T ) =
1

N !h3N

∫ (∏
i

d3pid
3ri

)
exp

(
−β

N∑
i=1

p2
i

2m

)
e−βU({r})

=
1

N !

(
V

λ3

)N ∫ ∏
i

d3ri
V

e−βU({r}), (5.1)

where in the second line we’ve done the integral over momenta and taken the liberty of
multiplying and dividing by N copies of the system volume V . We’ve done this because now
we see terms directly related to ideal, non-interacting quantities. The prefactor is just the
ideal gas partition function, and the integral is like doing an average over particle positions
where there are no correlations between the particle positions – exactly as if the positions
were those from an ideal gas with no interactions. Using the notation where a superscript
(0) refers to these ideal-gas like quantities or averages, we can write the canonical partition
function as

Z(N, V, T ) ≡ Z(0)(N, V, T )
〈
e−βU({r})〉(0)

(5.2)

= Z(0)
∑
l

(−β)l

l!

〈
U l
〉(0)

. (5.3)

This looks like a moment-based perturbative description of a system: when U = 0 we recover
the ideal gas which we know how to solve, and when U is solve we can calculate corrections
systematically. As we’ll see shortly, this direct moment-based expansion is often not espe-
cially useful: at short ranges there are often strong repulsions (Pauli exclusion, or hard-core
repulsion between particles, or... ), so the moments of U need not be small. Nevertheless,
working with this will lead us to an expansion which is useful.

5.1.2 Cumulant expansion

We know that what we often want to work with is the log of the partition function, so let’s
replace our moment expansion with a cumulant expansion: we see above that Z is acting
like a generator of moments, so taking the log gives us a generator of cumulants:

logZ = logZ(0) +
∞∑
l=1

(−β)l

l!

〈
U l
〉(0)

c
. (5.4)

At this point we specialize the form of the interparticle potential away from complete gen-
erality, and study potentials, φ that are pairwise in nature,

U =
∑
i<j

φ (ri − rj) ≡ φ (rij) , (5.5)

where we’ve introduce the notation rij to represent vector separations between pairs of
particles, which we’ll be seeing a lot of in the next sections.

Writing out the first few terms of this cumulant expansion, we have

logZ = logZ(0) − β 〈U〉(0) +
β2

2

(〈
U2
〉(0) −

(
〈U〉(0)

)2
)

+ · · · (5.6)

Let’s evaluate these first few cumulants for our pairwise potential.
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First cumulant

The first cumulant is quite straightforward, recognizing that for each pair of particles we
pick as the interacting pair we’re going to get copies of the same result:

〈U〉(0) =
∑
i<j

∫ (∏
α

d3rα
V

)
φ(ri − rj)

=
N(N − 1)

2

∫
d3r1

V

d3r2

V
· · · d

3rN
V

φ(r1 − r2)

=
N(N − 1)

2V

∫
d3rφ(r), (5.7)

where in the last line we’ve let r = r12. There you go: someone hands you a particular
interparticle potential (Lennard-Jones, or screened Coulomb, or...), and you go off, calculate
an integral, and you’ve got the first term in the cumulant expansion.

Second cumulant

Let’s write out the second cumulant as〈
U2
〉(0)

c
=
∑
i<j
k<l

[
〈φ(rij)φ(rkl)〉(0) − 〈φ(rij)〉(0) 〈φ(rkl)〉(0)

]
. (5.8)

This is a sum over
(
N(N−1)

2

)2

total terms, and it is helpful to divide those into three classes

of terms:

All particle labels are distinct, i.e., i, j, k, l are all different indices. In this case we can
look at the second moment and see

〈φ(rij)φ(rkl)〉(0) =

∫ (∏
α

d3rα
V

)
φ(rij)φ(rkl)

=

(∫
d3ri
V

d3rj
V

φ(rij)

)(∫
d3rk
V

d3rl
V

φ(rkl)

)
= 〈φ(rij)〉(0) 〈φ(rkl)〉(0) . (5.9)

Thus, these terms do not make any contribution to 〈U2〉(0)
.

One particle label is shared i.e., we have i, j, k = i, l as the four labels. We can make a
similar argument for neglecting this class of terms, too. We first write

〈φ(rij)φ(ril)〉(0) =

∫
d3rid

3rjd
3rl

V 3
φ(rij)φ(ril), (5.10)

and then change variables in the integration from ri, rj, rl to ri, rij, ril . This leaves us with

〈φ(rij)φ(ril)〉(0) =

∫
d3rid

3rijd
3ril

V 3
φ(rij)φ(ril) = 〈φ(rij)〉(0) 〈φ(ril)〉(0) , (5.11)

which again means these terms do not contribute to 〈U2〉(0)
.

113



The same pair is considered twice i.e., i = k, j = l. Well, the second cumulant doesn’t
vanish, and these are the remaining terms which we do need to keep track of. There are
N(N−1)

2
terms of this form, and they all contribute identically. Thus, our complete expression

for the second cumulant is

〈
U2
〉(0)

c
=
N(N − 1)

2

[∫
d3rij
V

φ2(rij)−
(∫

d3rij
V

φ(rij)

)2
]
. (5.12)

So far, we have the following expansion for the log of the partition function:

logZ = logZ(0)+
N(N − 1)

2

[
−β
∫

d3r

V
φ(r) +

β2

2

(∫
d3r

V
φ2(r)−

(∫
d3r

V
φ(r)

)2
)

+ · · ·

]
.

(5.13)
We now consider the thermodynamic limit, V,N →∞, and we find

logZ ≈ N log

(
V e

Nλ3

)
+
N2

2V

[
−β
∫

d3rφ(r) +
β2

2

∫
d3rφ2(r) + · · ·

]
. (5.14)

If we now, for instance, want to know the pressure of our system, we take the appropriate
derivative and find

βP =
∂ logZ

∂V
(5.15)

=
N

V
− 1

2

(
N

V

)2 [
−β
∫

d3rφ(r) +
β2

2

∫
d3rφ2(r) + · · ·

]
+O

((
N

V

)3
)
.

What have we done? We’ve basically written the equation of state of the system as a per-
turbation organized in powers of density, where the contribution at each order in density is
a sum over a series of terms involving integrals of powers of the pairwise potential.

As written, this sort of cumulant expansion is still not very helpful. Why? Because for
typical interactions there are large forces keeping molecules apart. For instance, one common
potential is the Lennard-Jones potential:

φ(r) = 4ε

[(σ
r

)12

−
(σ
r

)6
]
, (5.16)

where ε is related to the depth of the potential well and σ to the range over which the
repulsion is felt. Where do these sorts of potential come from? The attractive r−6 part comes
from fluctuating dipoles of electrically neutral atoms. Recall that if there were two interacting
permanent dipole moments, p1 and p2, the potential energy would scale as p1p2/r

3. There
are no permanent dipoles for neutral atoms, but atoms can acquire transient dipoles through
quantum fluctuations. If the first atom has a transient dipole p1 it will induce an electric
field, which will in turn induce a dipole in the second atom p2 ∼ E ∼ p1/r

3. The resulting
energy thus scales as p1p2/r

3 ∼ r−6; this is typically called the van der Waals attraction.
The r−12 term is meant to reflect the rapid transition to strong repulsion as the atoms get
very close. The exact form is not so important, and the common choice of a term like r−12

is simply a mathematical convenience.
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Figure 5.1: Lennard-Jones potential and the corresponding Mayer f-function The
potential, φ, is shown as a solid black line and the corresponding f = exp(−βφ)−1 is shown
as a dashed blue line.

With such a potential, we see that each integral in the series of series we wrote about
diverges ! This is, on its face, not such a good perturbation theory. Before we integrate each
term and despair, though, let’s do two things. First, let’s assume that the perturbative series

in density is still okay; for a dilute gas we’ll go ahead and truncate at order
(
N
V

)2
. Second,

lets sum the series first:

−β
∫

d3rφ(r) +
β2

2

∫
d3rφ2(r) + · · · =

∫
d3r

[
−βφ+

β2

2
φ2 − β3

3!
φ3 + · · ·

]
=

∫
d3r

[
e−βφ(r) − 1

]
≡

∫
d3rf(r), (5.17)

where in the final line we defined a new function (the Mayer f function) to stand for the
combination e−βφ(r)− 1. In Figure 5.1 I show a plot of the Lennard-Jones potential together
with the associated f(r): At short distances (where the potential is diverging) the f functions
converges to a value of −1, and at large distances (where the potential is vanishing) the f
function converges to 0. Indeed, for reasonable potentials integrals over these f functions are
perfectly well behaved, and we see that in our cumulant expansion we wrote down a series
in which every term individually diverges, but the sum of the series is something we can
evaluate!

Surveying our work in this section, we see that we tried to write down cumulant expansion
– a perturbative expansion in the potential – but that for reasonable potentials we ended up
having to re-express our result in terms of these Mayer f functions. It seems lie we would
have been better off – and could perhaps have made more systematic progress – had we been
able to expand in powers of f , rather than in powers of φ. The cluster expansion introduced
in the next section allows us to do exactly that!

5.2 ...to cluster expansions!

Now that we have a reason that we might want to find an expansion of the partition function
in powers of these f functions, let’s do so. We continue working with our Hamiltonian with
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only pairwise interparticle potential,

H =
N∑
i=1

p2
i

2m
+
∑
i<j

φ(rij),

for which the canonical partition function is

Z(N, V, T ) =
1

N !λ3N

∫ (∏
α

d3rα

)∏
i<j

e−βφ(rij). (5.18)

In order to understand how to manipulate this expression into a useful expansion, our initial
goal of this section is going to be to transcribe Eq. 5.18 from math to pictures. We begin by
introducing the additional bit of notation, writing the Mayer f functions as

fij ≡ f(rij) = e−βφ(ri−rj) − 1.

Using this notation, let’s organize the terms in Z by how many powers of f they contain:

Z(N, V, T ) =
1

N !λ3N

∫ (∏
α

d3rα

)∏
i<j

(1 + fij)

=
1

N !λ3N

∫ (∏
α

d3rα

)1 +
∑
i<j

fij +
∑
i<j
k<l

fijfkl + · · ·

 (5.19)

5.2.1 Diagrammatic representation of the canonical partition func-
tion

To help us organize the many terms that appear in Eq. 5.19, let’s start representing integrals
with diagrams3. The way we’ll draw these diagrams is by (1) drawing N points, and then

3Recall, from the section on probability, how we used a similar approach to deal with the combinatorics
of relating cumulants to moments.

Figure 5.2: The contribution of a graph is a product of the linked clusters, where
each unlinked point gives a factor of the volume.
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(2) representing fij by a line connecting points i and j. According to this prescription, an
nth-order term in f corresponds to diagrams with n lines drawn.

An example of a diagram with 5 copies of f is shown in Fig. 5.2. An important observation
is that the contribution of a particular diagram can be written as the product of the linked
clusters it contains (and where each point without a connecting line contributes one power
of the volume, V ). Another important observation is that every diagram with the same
structure contributes identically, i.e., independently of the labels ; we only need to care about
the number of 1-clusters, 2-clusters, triangles, etc., in a diagram.

We now have a prescription for writing the terms in Eq. 5.19 as pictures, and now we
will organize those pictures in a particular way. We define cluster integrals,

bl ≡ Sum over contributions of all linked clusters of l points. (5.20)

Ultimately, these bl are the namesake of the cluster expansion we will construct by the end
of this section. The first few cluster integrals are shown in Fig. 5.3:

Figure 5.3: Graphical representations of the first few cluster integrals

5.2.2 The cluster expansion

Let’s see why we care about these bl. First, consider a diagram in which we take N points
and partition it into n1 clusters of size 1, n2 clusters of size 2, and so forth (so, in the example
in Fig. 5.2, we would have n1 = N − 7, n2 = 2, n3 = 1, and n4 = n5 = · · · = nN = 0). This
defines a set of numbers of clusters of different sizes, {nl}. We noted above, though, that
every diagram that looks the same contributes the same amount, regardless of the labels
on the f ’s, so we are interested in the number of ways of choosing these sets of clusters of
various sizes4. Let’s call this number W ({nl}), which we can compute as

W ({nl}) =
N !∏

l nl!(l!)
nl
. (5.21)

4Note that this problem of partitioning a large number, N , into sets of integers is an interesting math
problem. Look up, for instance, the Hardy-Ramanujan Asymptotic Partition Formula if you’re interested.
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How did we arrive at this expression? Our strategy was essentially to first pick any particular
partitioning into {nl} l-cluster. We first overcount everything by considering every possible
permutation of the labels, giving us the N ! in the numerator above. Having overcounted,
we now divide out to account for diagram symmetries. First, for each individual l-cluster,
we note that the permutations of labels within that cluster give the same diagram (e.g.,
a line from point 1 to point 2 is unchanged when the labels 1 and 2 are permuted); this
gives us a factor of (l!) for each of the nl clusters of size l. Additionally, we have to consider
permutations of labels that replace all of the labels of one cluster of size l with a different
cluster of size l (e.g., a line from point 1 to 2 and from 5 to 6 is unchanged when labels (1 and
5) and (2 and 6) are permuted); this gives us the additional factor of nl! in the denominator.

I highly encourage you to get a feel for this by playing around. Try drawing, say, 5 or 6
points, break them up into clusters of different sizes, and get a feel for the combinatorics.

With this counting of the number of different types of diagrams, we can write the canon-
ical partition function as

Z =
1

N !λ3N

∑
{nl}restricted

W ({nl})
∏
l

bnll , (5.22)

where the restriction is that every point has to be in a cluster,
∑

l lnl = N . From the last
chapter, this situation should feel quite familiar: we have another case where a constrained
sum in the canonical ensemble is making our life difficult. In exactly the same way as before,
this difficulty is lifted by moving to the grand canonical ensemble.

So, we write down the grand partition function, noting that the sum over all possible
N of a restricted sum on the {nl} is equivalent to performing an unrestricted sum over the
{nl}:

Q =
∞∑
N=0

eβµNZN

=
∑
{nl}

1

N !λ3N

(
eβµ
)∑

l lnl N !
∏
l

bnll
nl!(l!)nl

=
∏
l

∞∑
nl=0

(
eβµ

λ3

)lnl bnll
nl!(l!)nl

. (5.23)

In the last line we recognize that we have written something like∏
l

∑
nl

1

nl!
[· · ·]nl ,

which is just the expansion of an exponential. Thus, we find5

Q =
∏
l

exp

[(
eβµ

λ3

)l(
bl
l!

)]
, (5.24)

5if you’re comparing these expression with Pathria, or other texts, please note that different authors
use slightly different conventions in the definitions of the cluster integrals; in particular, sometimes the bl
account for the factors of l! in that divide it in the expressions I’m writing.
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i.e.,

⇒ logQ =
∞∑
l=1

(
eβµ

λ3

)l(
bl
l!

)
(5.25)

Before we make use of this expression for the grand canonical partition function, it is worth
thinking for a moment about the graphical expressions we wrote for cumulants and moments.
The graphical interpretation of the above result is that the log of the sum over all graphs is
equivalent to the sum over only the connected clusters.

5.3 Virial expansion for a dilute gas

We consider, now, a dilute gas, and our goal for this section is to write a virial expansion
for the equation of state of the dilute gas, i.e., something of the form

βP = B1(T )
N

V
+B2(T )

(
N

V

)2

+B3(T )

(
N

V

)3

+ · · · , (5.26)

where we’ve written temperature-dependent coefficients Bi for the powers of density. For a
dilute gas we can certainly exploit the extensivity condition to write the grand potential as

− βG = logQ = −β (E − TS − µN) = βPV. (5.27)

Just as in Chapter 4 when we discussed the ideal gas in the grand canonical ensemble, we
see that the grand potential is proportional to the volume; comparing with Eq. 5.25 we see
that in fact each cluster integral bl ∝ V . We thus define a version of the cluster integrals
with this volume dependence removed,

b̄l ≡
bl
V
,

in terms of which we can write the pressure as

βP =
∑
l

(
eβµ

λ3

)l
b̄l
l!
. (5.28)

At the same time, we know that, specifying the chemical potential µ in the grand canonical
ensemble we can compute the expected number density of particles as

n =
N

V
=

1

V

∂ logQ
∂ (βµ)

=
∑
l

l

(
eβµ

λ3

)l
b̄l
l!
. (5.29)

Simplifying the notation by writing a dimensional version of the fugacity, x ≡ eβµ/λ3, we
arrive at the equation of state for a dilute gas:

βP =
∑
l

xl
b̄l
l!

n =
∑
l

lxl
b̄l
l!
. (5.30)
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This is... not exactly what we typically want. Just as in the chapter on quantum statistical
mechanics, what we want is the pressure as a function of density, but what we have is the
pressure as a function of fugacity together with a separate equation relating the number
density to the fugacity. We encountered this exact situation in looking at ideal quantum
gases, and we resolve it in the same way.

So, we write out the series expansion for n,

n = b̄1x+ b̄2x
2 +

b̄3

2
x3 + · · · (5.31)

Rearranging this (and noting that b̄1 = 1), we have

x = n− b̄2x
2 − b̄3

2
x3 − · · · , (5.32)

which we can self-consistently solve to any desired order by substituting the ith-order solution
for x into the (i+ 1)th-order expression. Starting with the first order approximation x1 ≈ n,
we get

x1 = n+O
(
n2
)

x2 = n− b̄2n
2 +O

(
n3
)

x3 = n− b̄2

(
n− b̄2n

2
)2 − b̄3

2

(
n− b̄2n

2
)3

+O
(
n4
)

= n− b̄2n
2 +

(
2b̄2

2 −
b̄3

2

)
n3 +O

(
n4
)
, (5.33)

and so on. We can now substitute this into the equation for the pressure; to get an expansion
correct to order i we use the xi expression obtained by the above procedure. So, for instance,
to third order we write (collecting all terms up to third order in the number density)

βP = b̄1x+
b̄2

2
x2 +

b̄3

3!
x3

= n− b̄2n
2 +

(
b̄2

2 −
b̄3

3

)
n3 +O

(
n4
)
. (5.34)

In general, we have a result of the form

βP = n+
∞∑
l=2

Bl(T )nl, (5.35)

as desired! The first term, B1 = 1, reproduces the ideal gas result. The second term is

B2(T ) = − b̄2

2
= −1

2

∫
d3r

[
e−βφ(r) − 1

]
, (5.36)

which diagrammatically is −1/2 times what we drew as a line between two points. We
calculate the third term diagrammatically, as illustrated in Fig. 5.4, and find

B3(T ) = −1

3

∫
d3r12d3r13f(r12)f(r13)f(r12 − r13) (5.37)
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Figure 5.4: Diagrammatic calculation of the third virial coefficient

That calculation shows the general result, that in these terms all of the “1-particle re-
ducible diagrams” – in which the removal of one point leads to disjoint clusters in the
diagram – cancel; the general result (consider working through the B4 term to verify your
understanding) is

Bl(T ) = − l − 1

l!
d̄l, (5.38)

where d̄l represents a sum over all 1-particle irreducible clusters of size l. In the next section
we’ll evaluate these sorts of virial coefficients for a “typical” gas, i.e., one governed by a
potential similar to a Lennard-Jones form.

5.4 The van der Waals equation

To see how (or if!) the sort of virial expansion we just worked out is useful, let’s consider
just the first correction to the ideal gas equation of state – the term involving B2(T ) – for
the Lennard-Jones potential,

φ(r) = 4ε

[(σ
r

)12

−
(σ
r

)6
]
, (5.39)

which, again, is a simple but reasonable approximation to the interaction between two neutral
molecules separated by some distance r.

5.4.1 The second virial coefficient for a Lennard-Jones interaction

The most straightforward approach is just to jump from the potential to the definition of
the second virial coefficient that we derived in the last section,

B2(T ) =
−1

2

∫
d3r

(
e−βφ(r) − 1

)
= −2π

∫
dr r2

(
e−βφ(r) − 1

)
(5.40)
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That integral looks unfamiliar, but one can express the answer in terms of the Kummer
confluent hypergeometric function6

1F1(a; b; z), and the Gamma function:

B2(T ) =
−πσ3 (βε)1/4

3
√

2

[
Γ

(
−1

4

)
1F1

(
−1

4
;
1

2
; βε

)
+ 2
√
βεΓ

(
1

4

)
1F1

(
1

4
;
3

2
; βε

)]
(5.41)

Is this helpful? This is, indeed, what you get by plugging things into, e.g., Mathematica,
and you could plot the behavior of this second virial coefficient as you vary the temperature
for various values of the Lennard-Jones parameters. This “plug-and-chug” approach, while
technically correct, obscures the physical picture of how we expect a dilute gas to behave.

5.4.2 Approximate but physical treatment of B2

Let’s do a better job of capturing the physics by making a rougher approximation to the
molecular interactions. In particular, let’s replace the Lennard-Jones potential with the func-
tion

φ(r) =

{
∞ r < σ

−ε
(
σ
r

)6
r > σ

. (5.42)

This approximate potential captures the following main features of the Lennard-Jones po-
tential: it has the van der Waals r−6 at large distances, it has an attractive well of depth ε at
short distances, and it is strongly (in fact, infinitely !) repulsive within a characteristic size of
the molecular core. Note that this simpler form makes it clear that σ is like the characteristic
diameter of one of the interacting molecules.

With this simpler potential we can compute the second virial coefficient as

B2(T ) = −1

2

∫
d3r

(
e−βφ(r) − 1

)
= −1

2

[
−4πσ3

3
+ 4π

∫ ∞
σ

dr r2
(
eβε(

σ
r )

6

− 1
)]

. (5.43)

The first term above reflects an excluded volume in the potential we have written down.
Keeping in mind that we are trying to describe a dilute gas at reasonably high temperatures,
let’s further approximate the second term by assuming βε� 1, that is, that we are at high
T relative to the well depth. We will use this approximation to write a series expansion for
the exponential of the potential:

eβφ ≈ βε
(σ
r

)6

+O (βε)2 .

With this approximation, the integral can be easily carried out:

B2(T ) = −1

2

[(
−4πσ3

3

)
+

4πσ3

3
βε

]
=

Ω

2
[1− βε] , where Ω =

4πσ3

3
. (5.44)

6As a series expansion, 1F1(a; b; z) =
∑∞
n=0

a(n)zn

b(n)n!
, where a(n) is the “rising factorial,” a(0) = 1, a(1) = a,

a(n) = a(a+ 1) · · · (a+ n− 1), etc.
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This is a nice, compact expression for the second virial coefficient: we see a small perturbative
correction that comes in at high temperatures, with an overall scale set by the excluded
volume of the molecules.

A few comments are in order, directed at the question of “when should this approximation
be reasonable?” Two obvious conditions stand out.

First, this is clearly meant to be a low-density expansion, but what we do mean by “low”
in this context? As with any series expansion, we want the ratio of consecutive terms to be
small, and the ratio of the correction to the ideal term is ∼ B2

ρ2

ρ
∼ Ω

ρ−1 . Note that Ω is

close to an atomic volume, so one can think of the above ratio as ∼ ρgas
ρliquid

. That is, when the

density of the system is such that the gas is close to liquifying, we should assume our series
approximation is insufficient.

Second, in our expansion of the attractive tail, we assumed that βε � 1. If βε & 1
for these attractive potentials, we could not have done a reasonable series expansion in the
first place. In general, for low temperatures the ground state of a system with attractive
interactions is not a gas, but a dense collection of molecules sticking together.

There is an additional consideration, which speaks to our ability to factor out the Ω term
in the series expansion we wrote. The fact that we could do this speaks to the sense that the
short-ranged part of the potential dominates the integral we had to do. In this context there
is a sense in which potentials which fall of faster than r−3 are “short ranged;” for potentials
like φ ∼ r−3 there are terms which are logarithmic in the size of the system, and for even
longer-ranged potentials the whole expansion fails.

5.4.3 The van der Waals equation

Finally, we can write down the equation of state based on our approximate treatment of the
second virial coefficient:

βP = n+
n2

2
Ω (1− βε)

⇒ β

(
P +

n2Ω

2
ε

)
= n

(
1 +

nΩ

2
+ · · ·

)
. (5.45)

Since we’re only being accurate to order n2 in the above expression, we’re free to re-write
the right-hand side as

n

(
1 +

nΩ

2
+ · · ·

)
≈ n

1− nΩ
2

+ · · · .

Using this rearranging, we arrive at the van der Waals equation of state:

P =
NkBT

V − NΩ
2

− εΩ

2

(
N

V

)2

, (5.46)

which is often presented as(
P + a

(
N

V

)2
)

(V − bN) = NkBT.
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Figure 5.5: van der Waals equation of state (Left) The van der Waals equation of
state for a dilute gas above, at, and below the critical temperature. (Right) The Maxwell
equal-area construction for finding the coexistence region.

The van der Waals equation does a reasonable job of describing dilute gases, which is
certainly how we derived it, but ultimately we would like to be able to describe dense phases
of matter (going from weakly interacting systems to strongly interacting ones). To that end,
and as an introduction to the phase transition material to come, we spend a bit more time
thinking about what the van der Waals equation says.

We start with the left side of Fig. 5.5, which shows the isotherms predicted by the van
der Waals equation for three different temperatures. For high temperatures we see curves
that are basically the same as the ideal gas isotherms we encountered back when we were
thinking about thermodynamics as a phenomenological theory. The pressure diverges not at
V = 0 but at some finite value of V , thanks to the excluded volume effects, but otherwise
this looks quite familiar. On the other hand, at lower temperatures the isotherms look very
strange, developing a minimum at small volumes; precisely at a critical temperature there is
part of the corresponding isotherm where the curve is flat.

Clearly, the low-temperature curves, with T < Tc, are unphysical (and they are, after
all, in a parameter regime we did not expect our theory to work), which we can see in two
ways. Early on, we argued in a problem set that thermodynamic stability requires δPδV < 0,
which is violated on portions of an isotherm where ∂P

∂V
> 0. One can also see this using our

our statistical mechanical relations. We recall that

〈N〉 =
∂ logQ
∂(βµ)

= V
∂P

∂µ

∣∣∣∣
T,v

,

and 〈
N2
〉

=
∂2 logQ
∂(βµ)2

=
∂ 〈N〉
∂(βµ)

= kBT
∂N

∂µ

∣∣∣∣
T,v

.

Dividing these expressions we get the ratio of the number fluctuations to the mean and relate
that ratio to the isothermal compressibility:

〈N2〉 − 〈N〉2

〈N〉
=

1

βV

∂N

∂P

∣∣∣∣
T,V

=
−1

βV

∂N

∂V

∣∣∣∣
P,T

∂V

∂P

∣∣∣∣
N,T

=
N

V
kBTκT . (5.47)
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For a stable system the compressibility should be positive, and since κT = −1
V

∂V
∂P

∣∣
T

, we see
again that the van der Waals curves for T < Tc are unphysical.

Maxwell construction

So, our equation contains obviously unphysical features, but it also schematically does remind
us of the phase behavior of real fluids, schematically illustrated on the right of Fig. 5.5. Can
we make some ad hoc changes to the theory to get at the right answer? One reason for hope
is that qualitatively our theory both gives the right behavior for T ≥ Tc and gives us a clear
indication that it needs help for T < Tc – theories that have this self-consistent limitation
on their regime of validity often contain important clues to system behavior even outside of
where they technically work.

To motivate the Maxwell construction which attempts to correct the van der Waals
picture, let’s consider changes in the chemical potential as we move along an isotherm below

the critical temperature. From the above we know N = V ∂P
∂µ

∣∣∣
T

, giving us dµ = V
N
dP at

constant T . Integrating this up, starting from some reference point A, we have

µ(T, P ) = µ(T, PA) +

∫ P

PA

dP ′
V (T, P ′)

N
.

The qualitative behavior of the chemical potential as the isotherm is traversed is schemati-
cally illustrated in Fig. 5.6. There are some portions where the curves is well-behaved, but
there are a range (determined by an equal-area consideration) over which the function µ is
multi-valued!

Figure 5.6: Moving along an isotherm from a reference point at state point A through
the sequence A → B → C → G, we calculate the chemical potential relative to that at the
starting point. In addition to B → C being thermodynamically unstable, we see the portions
E → B and C → F are metastable. In equilibrium, the system will have the minimum µ,
and follow the path A→ E → F → G.

In equilibrium the number of particles Nα in phase α will adjust so as to minimize the
Gibbs free energy

∑
α µαNα, and so when confronted with a multi-valued set of possible

chemical potentials we choose the lowest one. In the figure, the isotherm A→ B → C → G
gets replaced by the isotherm A→ E → F → G, corresponding to the straight line we drew
in the coexistence region in Fig. 5.5. Notice, by the way, that the part of the original isotherm
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which gets replaced is not just the part where the thermodynamic stability condition was
violated, but is actually a larger region! In these additional parts of the isotherm the system
is metastable, rather than being strictly stable or unstable.

This Maxwell construction qualitatively succeeds, in that it now gives us largely the cor-
rect physical behavior, but it certainly feels weird! It required us to start with an approximate
theory, consider regions of that theory where the behavior was clearly unphysical, and then
try to sweep any unpleasantness under the rug. This was all done, additionally, in a regime
where it is not at all clear that simply doing a better job with our perturbative expansion
would be of any help. In the next chapter we’ll take a more principled approach to these
issues.
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Chapter 6

Phase transitions

In the last few chapters we have been preoccupied with various methods of calculating par-
tition functions, both for ideal and for interacting systems. In principle, once we know a
partition function we can calculate any thermodynamic properties that we might be inter-
ested in. As we discussed a particular perturbative approach to calculating the partition
function for a dilute gas – and then had to patch it up via Maxwell’s construction in order
to describe both a gas and a liquid state – you may be wondering: if it is even clear that a
single partition function can actually describe multiple phases?

In fact, perhaps you have an even deeper concern. Phase transitions are characterized by
discontinuities in the free energy or its derivatives, and the free energy can be written as

Z = e−βF = Tr
(
e−βH

)
,

where I’m using the trace notation to indicated a schematic sum over all of the degrees of
freedom in the Hamiltonian, H. But most H that we study are non-singular functions of
their degrees of freedom, so the partition function is just a sum of a large number of terms,
each of which is exp (some analytic function). How could such a sum be non-analytic, and
can a single partition function even describe a phase transition (let alone multiple phases)?

A deep understanding of the answer to these questions, together with an understanding
of how near critical points whole classes of disparate systems behave in the same way, has
only been understood for, say, the last 50 years1. In this chapter we will discuss mean
field models of phase transitions, critical points, Landau theory for phase transitions, the
relationship between fluctuations and correlations, and the scaling hypothesis for behavior
near critical points. This will lead us right up to the precipice of the renormalization group2;
time permitting I will try to throw together a few bonus lectures on this.

6.1 Mean field condensation

As a way of sliding from the last chapter to this one we’ll return again to the van der Waals
equation, but now with a somewhat different approach. In the section on interacting systems

1Perhaps making the subject the most “modern” of the graduate physics curriculum? Hmm...
2Or, since an anomalously large number of the professors I took graduate classes used British English,

the “renormalisation group.”
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we were confronted with the problem of computing, say, the canonical partition function

Z(V, T,N) =
1

N !h3N

∫ ∏
i

d3pd3q exp

(
−β
∑
i

p2
i

2m

)
exp

(
−β
∑
i<j

φ(rij)

)
, (6.1)

and with a great deal of effort we constructed a perturbative expansion to do just that in the
high-temperature / low-density regime. We then muddled along and argued we could work
with the resulting equations even when the system was cooled below the Tc associated with
the gas transitioning to a liquid. It felt dubious.

Our goal is still to approximate the partition function, but let’s consider instead a mean
field calculation, in which we assume that the potential energy contribution of a particle is
computed based on its interactions with an average – and uniform – background of particles.
First, rather than specifying that we are working with a Lennard-Jones pairwise potential,
let’s just think of any potential which (1) has a “hard-core” component for r < σ, (2)
is sufficiently short-ranged, and (3) has some attractive part of the potential, where the
potential well has integrated area −u. In our approximation for the Lennard-Jones potential,
for instance, we would have −u = −εΩ. Next, we first consider the actual (fluctuating)
distribution of particle density,

n(r) =
∑
i

δ (r − ri) ,

in terms of which we could write the potential energy of our system as

U ({ri}) =
1

2

∫
d3rd3r′ n(r)n(r′)φ(r − r′). (6.2)

We now assume that the system has uniform density, and approximate n(r) ≈ n = N/V .
Then the typical energy, Ũ , is

Ũ =
n2

2

∫
d3rd3r′φ(r − r′)

=
n2V

2

∫
d3rφ(r)

=
−un2V

2
. (6.3)

We substitute this average energy into Eq. 6.1 for the canonical partition function, and
we get

Z =
1

N !λ3N
exp

(
βuN2

2V

)∫ ∏
i

d3ri. (6.4)

We make one last approximation before we do the remaining integral over spatial coordinates,
and that is a Ω/V expansion in how we treat the excluded volume effects. To first order in
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(Ω/V ) we write∫ ∏
i

d3ri = V (V − Ω) (V − 2Ω) · · · (V − (N − 1)Ω)

= V N

[
1− 1

V
(Ω + 2Ω + · · ·+ (N − 1)Ω) + · · ·

]
= V N

[
1− 1

V

N(N − 1)

2
Ω + · · ·

]
≈

(
V − NΩ

2

)N
. (6.5)

Together with our mean-field estimate of the effect of the attractions, then, our partition
function is

Z(V, T,N) =

(
V − NΩ

2

)N
N !λ3N

exp

(
βuN2

2V

)
, (6.6)

from which we can compute the pressure in the canonical ensemble as

βPcanonical =
∂ logZ

∂V
=

N

V − NΩ
2

− βu
2

N2

V 2

⇒ Pcanonical =
NkBT

V − NΩ
2

− u

2

(
N

V

)2

. (6.7)

This is precisely the van der Waals equation again! But here, rather than derive it in the
context of a perturbative expansion in the density and the temperature, we have derived
it in the context of an approximation of uniform density. And certainly a uniform density
approximation is the sort of thing we expect to be equally valid in both the gas and liquid
states, hence why we expect that we ought to be able to describe multiple phases with the
same Hamiltonian and the same partition function.

6.1.1 Maxwell construction, once again

Let’s pause to better understand how to connect this picture with the liquid-gas phase
transition. Recall that one of the problems in the canonical picture is understanding what
happens in the coexistence region. We’ve already seen several examples of how moving from
the canonical to the grand canonical ensemble can make our life easier, so for practice (and
variety), let’s see an example of another Legendre transform and work in the Gibb’s canonical
ensemble, i.e., the isobaric ensemble, in which we imagine our system coupled to a piston
which keeps the pressure controlled. Our partition function in this ensemble becomes

Z(P, T,N) =

∫ ∞
0

dV e−βPVZ(V, T,N) =

∫ ∞
0

dV eψ(V ), (6.8)

where ψ(V ) = −βPV + logZ(V, T,N). We now approximate this expression by the saddle
point method we saw back in Chapter 2, and say there is some particular value of V which
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Figure 6.1: Saddle-point picture for the condensation isotherm Left shows a T <
Tc isotherm, right schematically sketches the function ψ(V ) for different points along the
isotherm. The critical pressure is when the heights of the two purple peaks are precisely
equal.

maximizes ψ(V ), which we will call Vmax. Thus

Z(P, T,N) ≈ eψ(Vmax).

We can find this Vmax by extremizing ψ:

∂ψ

∂V
= 0⇒ 0 = −βP +

∂Z

∂V
= −β(P − Pcanonical(V )). (6.9)

If T > Tc this is fine, but we know that for T < Tc sometimes there are three possible V to
check for the canonical pressure. In this regime one V will correspond to a local minimum
of ψ, so there are two candidate Vmax, as sketched in Fig. 6.1. We would say

Z ≈ eψ(Vgas) + eψ(Vliquid),

and we again say that Z is dominated by exponential with the largest argument. Thus, as
the temperature changes and the relative ordering of ψ(Vgas) and ψ(Vliquid) switch we can
get a discontinuity in our system3.

Notice, by the way, that by extensivity we can write

exp [−βPV − βE + βTS] = exp (−βµN) ,

so as we anticipated last chapter, choosing V to minimize ψ at fixed N is like choosing the
lowest value of µ. Additionally, what is the critical value of pressure at which the discontinuity
we sketched above can be found? It must be when ψ(Vgas) = ψ(Vliquid) ⇒ ψ(Vliquid) −
ψ(Vgas) = 0. Writing the difference as an integral of a derivative:

0 = ψ(Vliquid)− ψ(Vgas) =

∫ Vliquid

Vgas

dV
dψ

dV

= β

∫ Vliquid

Vgas

dV (Pcanonical − Pc) ; (6.10)

In that last integral we recognize precisely the Maxwell equal-area construction for finding
the isotherm.

3Note, again, that it is only a discontinuity in the assumption that N → ∞; otherwise everything is
smooth
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6.2 The law of corresponding states

Having seen two different derivations of the van der Waals equation, let’s write it in a
simplified form,

P =
kBT

v − b
− a

v2
, (6.11)

where v = V/N is just the volume per particle, and a and b are parameters that depend on
the microscopic details of the systems under study (generically related to the characteristic
size of the interacting particles, and how strong the attractive interactions are).

We have seen that this equation goes from being monotonic to non-monotonic at some
critical value of temperature, and that at Tc there is a point where the critical isotherm is
flat (with both the first and second derivative vanishing. Where does is this critical point?
We find it by4 writing

∂P

∂v
= 0 = − kBT

(v − b)2
+

2a

v3
(6.12)

∂2P

∂v2
= 0 =

2kBT

(v − b)3
− 6a

v4
. (6.13)

Dividing the first equation by the second equation gives us vc−b
2

= vc
3
⇒ vc = 3b, and we

can then plug this critical volume per particle into the above expressions to find the critical
point on the critical isotherm:

vc = 3b, kBTc =
8a

27b
, Pc =

a

27b2
. (6.14)

Suppose we wanted to know if the van der Waals equation was actually any good, and
we convinced someone to do an experiment. In it’s basic form, comparing experimental data
to the van der Waals equation would simultaneously test both the quality of the van der
Waals equation and the ability to measure the microscopic parameters that enter the van der
Waals equation, a and b. But, in general, measuring the microscopic Hamiltonian is really
hard! Better would be to try to locate the critical point of the fluid in question, noting that
the van der Waals equation predicts that the ratio

Pcvc
kBTc

=
3

8
= 0.375 (6.15)

is independent of the microscopic details, and should be the same for all fluids! Experimen-
tally, this estimate is okay5 Many real substances have a range for this ratio between 0.28
and 0.33 (carbon tetrachloride is about 0.27, argon is about 0.29, He4 is about 0.31, water is

4A more elegant approach is to note that the van der Waals equation can be written as a cubic polynomial
in v: pv3 − (pb + kBT )v2 + av − ab = 0. For T > Tc there is just one real root of this equation, and for
T < Tc there are three real roots; precisely at the critical point all three roots must be real and identical,
so we must be able to write the equation as pc(v − vc)3 = 0. Comparing the coefficients of this to the more
general cubic expression immediately gives us the critical pressure, volume, and temperature.

5Different textbooks will compare 3/8 to the experimental numbers I’m about to quote and declare the
agreement “good” or “bad” or “a little high.” Agreement with experiment is in the eye of the beholder.
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pretty low at 0.23) but similar substances seem to differ from the 3/8 ratio in similar ways;
this is encouraging when we think about the types of approximations we made in deriving the
van der Waals equation in the first place. For instance, we assumed the attractive potential
was isotropic, so the fact that diatomic gases have a particular ratio while monatomic gases
a different one feels consistent with the way we constructed our theory.

Even better, this suggests that we write down a dimensionless version of the van der
Waals equation, in which we measure everything relative to the value at the critical point.
Defining Pr = P/Pc, vr = v/vc, and Tr = T/Tc, we can write the equation of state as

Pr =
8

3

Tr
vr − 1

3

− 3

v2
r

, (6.16)

a universal equation of state that all fluids obeying the van der Waals equation of state would
be expected to obey. Remarkable! With no other parameters, all fluids are expected to have
the same equation of state, and similarly all thermodynamic properties which are derived
from the equation of state should also be in correspondence. So, if two different systems are
in states that are characterized by the same values of vr and Tr, one would predict their Pr
would match as well: this is the law of corresponding states.
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Figure 6.2: Compressibility vs reduced pressure for several substances Thin lines
are curves generated by the van der Waals equation of state at various reduced temperatures;
reduced temperature for the actual measurements is indicated by color. Data taken from H.
E. Stanley, Introduction to Phase Transitions and Critical Phenomena, Oxford University
Press, 1971

This is our first look at a type of universality, albeit of a different character than we
will see when we look at universality near a critical point. The law of corresponding states
is expected to hold not only close to the critical point, but in fact everywhere in the phase
diagram. Experimentally the law of corresponding states is often well satisfied, even by fluids
that do not obey the van der Waals equation! Generally, the expectation set forth by the
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corresponding states hypothesis is that we should be able to write the equation of state as

P

Pc
= f

(
T

Tc
,
v

vc

)
(6.17)

for some function f which might be related to the van der Waals derivation, but might be
completely different. A demonstration of this correspondence is shown in Fig. 6.2, showing
the ratio PV/T vs reduced pressure for several substances. None of them follow the van
der Waals equation particularly well, but do demonstrate the expectation that, for instance,
this ratio when plotted against reduced pressure at a fixed reduced temperature should be
independent of the fluid being measured.

6.3 Critical point behavior of a van der Waals fluid

To see why we might have expected the law of corresponding states, at least near a critical
point, let’s imagine expanding the equation of state close to the critical point6. We define
the reduced variables

π = Pr − 1 =
P − Pc
Pc

, ν = vr − 1, τ = Tr − 1,

in terms of which the reduced equation of state becomes

3ν3 + π(1 + ν)2(2 + 3ν) = 8τ(1 + ν)2. (6.18)

We’ll use this simplified form to study the relationship between our reduced variables and
various thermodynamic quantities, and the compare those relationships to experimentally
obtained results.

Critical isotherm: Along the critical isotherm, for which τ = 0, we can easily expand Eq.
6.18 for close to the critical point (i.e., for small π and ν), and we find

π ≈ −3

2
ν3 ⇒ (P − Pc) ∼ (v − vc)3 . (6.19)

Volume differences: We next look at how ν depends on τ as the critical point is ap-
proached from low temperatures. Rewriting Eq. 6.18 as

3ν3 + 8(π − 1)ν2 + (7π − 16τ)ν + 2(π − 4τ) = 0,

we next recognize that near the critical point the coexistence curve is symmetric. This means
that near the critical point, when we consider the polynomial in ν, we should have two roots
that are approximately equal in magnitude (with opposite signs), and a third root which is
very close to zero. Comparing this consideration to the above equation means that

π − 4τ ≈ 0⇒ π ≈ 4τ, (6.20)

and so for the other possible values of ν we need to solve ν2 + 8τν + 4τ = 0. Doing so gives

lim
T→T−c

ν ≈ ±2|τ |1/2 ⇒ lim
T→T−c

(vgas − vliquid) ∼ (Tc − T )1/2 . (6.21)

6afterwards, we’ll see why this approach has made a subtle but tremendously important mistake!
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Critical isochore: Finally, for this comparison, we look at the isothermal compressibility,
which is essentially determined by

κτ ∼ −
∂ν

∂π

∣∣∣∣
τ

≈ 2

7π + 9ν2 − 16τ
.

If we approach the critical point along the critical isochore (ν = 0) from the high-temperature
side, we get

lim
T→T+

c

− ∂ν

∂π

∣∣∣∣
τ

≈ 1

6τ
⇒ lim

T→T+
c

κT (vc) ∼ (T − Tc)−1 (6.22)

We did these calculations in the context of the van der Waals equation of state, but
actually all we have really assumed is that our system is (a) mechanically stable and (b)
analytic, in that close to the critical point we could expand the pressure like

P (T, v) = Pc + α(T − Tc)− a(T − Tc)(v − vc) +
b

2
(T − Tc)(v − vc)2 − c

6
(v − vc)3 + · · · ,

where mechanical stability tells us that the coefficient a > 0 above Tc and c > 0 at Tc. What
we arrive at is a prediction of universal singular behavior near the critical point, with various
exponents characterizing the strength of the singularities.

Writing the above results using conventional names for the exponents, we can write

lim
T→T+

c

κT (vc) ∼ (T − Tc)−γ

lim
T→T−c

(vgas − vliquid) ∼ (Tc − T )β (6.23)

(P − Pc) ∼ (v − vc)δ .

In our mean field calculation we had

γ = 1, δ = 3, β = 1/2.

Experimentally, it is found that there are singularities in all of these quantities near the
critical point, but the exponents are

γ ≈ 1.2, δ ≈ 4.8, β ≈ 0.32

On the one hand, that’s not too bad! The δ exponent doesn’t look great, but β and γ
aren’t so far off. On the other hand, usually in physics we are willing to make “spherical cow”
approximations as we build our theories – i.e. capturing the basic, often qualitative behavior
of some phenomenon of interest – as long as we are convinced that systematically improving
our approximations will lead to systematically closer quantitative agreement with reality.
The (perhaps surprising!) fact is that until the development of the theory of modern critical
phenomena is was not possible even in principle to account for the difference between, say,
γ = 1 in the theory and γ ≈ 1.2 in real life. After all, as emphasized a few paragraphs
above, all we have really done to come up with our theoretical critical exponents was assume
stability and analyticity near the critical point! The physical systems are indeed stable,

134



so apparently we made some subtly but mightily wrong assumption when we treated the
equation of state as analytic near the critical point.

As a hint at what went wrong, recall from the last chapter that the ratio 〈N2〉 / 〈N〉 ∝ κT ,
but then we showed that near the critical point that the isothermal compressibility diverges
near the critical point. That is, the fluctuations in particle number are enormous relative
to the mean number: in short, our “mean field” assumption of uniform density cannot be
correct close to the critical point. Somehow, by neglecting these fluctuations we were led to
qualitatively correct beliefs about the behavior of fluids (corresponding states, divergences
near the critical point), but were left in a quantitative pickle, with no apparent systematic
way to improve our understanding of the exponents. The final few sections of this course will
introduce a few of the big ideas in critical phenomenon; for those interested in more details I
particularly like Goldenfeld’s Lectures on Phase Transitions and the Renormalization Group
and Kardar’s Statistical Physics of Fields.

6.4 Another mean field theory, more critical exponents

6.4.1 Mean-field Ising model

So far we have been focusing our set of examples heavily on fluids (ideal gases, dilute gases,
van der Waals fluids below Tc...), and here we will briefly discuss a7 mean field theory for
the Ising model.

We consider a nearest-neighbor Ising model on a d-dimensional hypercubic lattice com-
posed of spins {s}; the Hamiltonian for the spins, with coupling constant J in an external
field B, is

H = −J
∑
〈ij〉

sisj −B
∑
i

si, (6.24)

and we are interested in the magnetization

m =
1

N
〈si〉 =

1

Nβ

∂(logZ)

∂B
. (6.25)

A mean field approximation for this problem follows by writing the interactions between
neighboring spins assuming the fluctuations of neighboring spins away from the average is
small. That is, we approximate

sisj = ([si −m] +m) ([sj −m] +m)

= (si −m)(sj −m) +m ((si −m) + (sj −m)) +m2

≈ m(si + sj)−m2, (6.26)

and our mean field Hamiltonian is just

H ≈ JNqm2

2
− (Jqm+B)

∑
i

si, (6.27)

7Just a comment: mean field theories are not unique descriptions of a system! There are often many ways
to generate a mean field theory and the results need not be identical. In general, all mean field theories for
the same system will share the same scaling near a critical point, but will typically differ in their calculations
of of non-universal features.
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where q is the number of nearest neighbors (q(d) = 2d for the hypercubic lattice). We have
transformed our problem into a non-interacting Ising model in an effective external field,
where

Beff = B + Jqm.

The partition function is now easily expressible as N copies of the non-interacting case:

Z = e−βJNqm
2/2
(
e−βBeff + eβBeff

)N
= 2Ne−βJNqm

2/2 coshN (βBeff ) . (6.28)

Finally, we self-consistently determine what the value of m is using m = 1
N
〈si〉 = 1

Nβ
∂(logZ)
∂B

;
the result is

m = tanh (βB + βJqm) . (6.29)

6.4.2 Critical point behavior

First, in the absence of an external field, our mean field equation is m = tanh (βJqm), and
since tanh x ≈ x − x3/3 + · · · the slope of m near the origin is βJq. If βJq < 1, the only
solution to the mean field equation is m = 0; if, however, βJq > 1 there are three solutions:
m = 0 or m = ±m0 (and the m = 0 solution turns out to be unstable, just like the putative
middle solution for the volume at a particular pressure when T < Tc in the van der Waals
equation).

Given this zero-field critical temperature, kBTc = Jq, let’s define the reduced inverse
temperature τ = Tc/T , let’s apply the hyperbolic trig identity

tanh (a+ b) =
tanh a+ tanh b

1 + tanh a tanh b

to Eq. 6.29 to obtain

tanh (βB) =
m− tanh (mτ)

1−m tanh (mτ)
. (6.30)

Close to the critical point, where we expect both the field and the magnetization to be small,
we can expand this to obtain

βB ≈ m(1− τ) +m3

(
τ − τ 2 +

τ 3

3
+ · · ·

)
+ · · · (6.31)

From this, we can read off some critical exponents. In the absence of an external field we
can approach Tc from below, and we see

m2 ∼ Tc − T
Tc

+ · · · ⇒ m ∼ ± (Tc − T )1/2 . (6.32)

Conventionally, this critical exponent is called β, and here β = 1/2.
We can also look at how the external field and the magnetization are related along the

crtical isotherm (here, denoted τ = 1). We immediately see

B ∼ m3; (6.33)
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this critical exponent is conventionally called δ, and here δ = 3.
We can also easily look at the isothermal magnetic susceptibility, χT = ∂m

∂B

∣∣
T

, and study
how this changes as we vary T . Differentiating our series expansion of the equation of state
with respect to B gives

1

kBT
= χT (1− τ) + 3m2χT

(
τ − τ 2 +

τ 3

3

)
. (6.34)

For T > Tc the only solution is m = 0, so immediately

χT =
1

kB (T − Tc)
. (6.35)

For T < Tc, we substitute in our result that m ∼ (Tc − T )1/2, and similarly find χT ∼
|T − Tc|−1. This critical exponent is conventionally called −γ, and here γ = 1.

Comparison with exact results

You’ll notice that the critical exponents we’ve just computed do not depend on the dimension,
d, of the lattice. In d = 1 the mean field theory is disastrously wrong, as in 1D it turns out
that there isn’t even a phase transition! In higher dimensions the qualitative features of our
calculation are correct (there is a phase transition; there are power-law divergences of the
quantities we’ve studied; etc.). In d ≥ 4, the mean field calculation turns out to give the
correct critical exponents, so that’s neat!

What about d = 2 and d = 3? Here’s a table8 (in d = 2 there is an exact solution for the
Ising model; in d = 3 they have been determined via a great deal of numerical effort):

Mean field Exact result (d = 2 ) Numerical result (d = 3 )

β 1/2 1/8 ≈ 0.32
δ 3 15 ≈ 4.8
γ 1 7/4 ≈ 1.2

What is going on, here?! The mean field results look the same as the mean field theory
for the van der Waals equation, but perhaps you suspect that’s just because I’ve shuffled
variable names around to make things look good. But by comparing the d = 3 results with
the experimental results for real liquid-gas critical behavior you should be convinced that
we really are talking about the same critical exponents. Apparently, then, mean field models
of ferromagnetism and mean field models of fluids give the same critical point behavior, and
get the answer wrong in the same non-obvious way!

This is evidence for universality at the critical point, where apparently there is a single
theory which describes the essential physics at the critical point for magnets, for the liquid-
gas transition, for the 3D Ising model, and many other seemingly unrelated systems. We’re
living the dream! In physics we’re always trying to strip away as much of the unnecessary

8There are other critical exponents, which I’m not telling you about yet but which fit the pattern. There’s
α (for the divergence of the heat capacity), there’s ν (for how the correlation length depends on temperature
close to the critical point), and there’s η (which describes the long-range behavior of the two-point correlation
function precisely at the critical point).
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detail from a system as we can, and apparently near a critical point “Nature” does all the
hard work for us!

As an aside, the pattern we saw above as we varied the dimension of our model under
study is pretty generic: when you write down a mean field theory there is a dimension at
or below which which the theory fails completely (called the lower critical dimension, dl),
a dimension at or above which the theory gives the right answers (called the upper critical
dimension, dc). For dl < d < dc mean field theory often returns crudely correct phase
diagrams that are wrong or, worse, misleading near critical points. Sadly for mean field
theory, life tends to happen in between dl and dc.

6.5 Landau’s phenomenological theory

If seemingly very different mean field theories – for very different physical systems! – give
rise to the same essential behavior near their respective critical points, your instinct is that
there ought to be a unified way of looking at phase transitions that reveals why this should
be the case. Landau’s phenomenological theory9 of phase transitions serves exactly this
role, focusing on understanding the universal behavior of physical systems based on two
general considerations: analyticity and symmetry. The Landau approach to phase transitions
is typically only qualitatively correct (as we are about to see, it gives exactly the same
critical exponents as mean field theory), but it (a) let’s us understand universality and (b)
is extremely straightforward, letting you compute mean field critical exponents for systems
in different universality classes with typically great rapidity.

Landau theory postulates the existence of an object, L, called the Landau free energy
density (it is not a thermodynamic free energy density, and it need not be convex). The
theory starts by identifying an order parameter of the system, η, which is a quantity that is
typically zero in a high-temperature or disordered phase, and non-zero in an ordered phase:
For the liquid-gas transition one can take the difference in densities between the phases
(η = vgas − vliquid), for the Ising model magnet we can take the magnetization (η = m),
for a superconductor it is related to off-diagonal long-range order in the one-particle density
matrix, etc. Order parameters for a particular system need not be unique, and depending on
the nature of the problem they can be scalars, vectors, etc., although here we will assume it
is a scalar.

Once we have identified an order parameter, we want to construct an L that will act like
a free energy density (and has dimensions of energy per volume), insofar as we will compute
thermodynamic quantities by taking appropriate derivatives of L. We construct L via the
following constraints:

1. The state of the system is specified by the global minimum of L with respect to η.

2. L must be consistent with the symmetries of the system.

3. Near the critical point, L is an analytic function of η and any coupling constants, which

9To be distinguished from a version of Landau theory which is motivated by systematic calculation
starting with a microscopic Hamiltonian. This more complicated version is typically not more insightful.
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I’ll denote as {K} here. Thus, for instance, for a spatially uniform system we can write

L =
∑
n=0

an({K})ηn (6.36)

4. In the disordered phase the order parameter should be η = 0, while it should be small
and non-zero in the ordered phase.

The Landau free energy density for a magnetic system

Let’s see how these constraints let us build L for a particular example: we’ll choose the kind
of Ising model we just discussed in the last section. By the third and the fourth constraint,
near Tc we can expand L as a Taylor series, and since we expect η to be small, we don’t need
to go to very high order. We’ll write

L =
4∑

n=0

anη
n, (6.37)

where the coefficients an could depend on the Ising model coupling term J , the external field
B, the temperature T , or whatever else happens to be in our model.

Additionally, from the first constraint we have that L is extremized by solving

∂L
∂η

= a1 + 2a2η + 3a3η
2 + 4a4η

3 = 0. (6.38)

Since we want η = 0 to be the solution for T > Tc, we have a1 = 0.
Finally, what about the symmetry constraint? Consider our Ising model in the absence

of any external field, B = 0: certainly the Hamiltonian here is invariant under the flipping of
every spin10, and we expect that the probability of finding the system with a particular value
of the magnetization has the property P (η) = P (−η). We expect, since we want L to behave
like a free energy, that P ∼ exp (−βL), so we require for this model that L(η) = L(−η). The
fact that L is even implies that in our Taylor series ai = 0 for every odd value of i. Thus, we
have

L = a0 + a2η
2 + a4η

4 +O(η6), (6.39)

with the additional constraint that a4 > 0 (if it is not, then L above would be minimized by
η →∞, and we want η to be finite and small... if a4 is negative for a particular system, one
needs to include higher order terms to stabilize the system.

What remains is to ask, for the Ising ferromagnet, about the temperature dependence of
the coefficients ai. First11, a0 is the value of L in the high temperature phase, and in general
we expect this coefficient to vary smoothly (i.e., without divergence) through the critical
temperature. It represents, in a sense, degrees of freedom which are not described by (and
are certainly not coupled to) the order parameter; it may be important for some detailed
calculations, but we will typically set it to zero.

10Including the field, the Ising model has Z2 symmetry associated with H(B, J, {si}) = H(−B, J,−{si})
11or zeroth
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Next, we expand the fourth-order coefficient as

a4 = a
(0)
4 +

T − Tc
Tc

a
(1)
4 + · · · , (6.40)

where the notation indicates the part of the coefficient associated with a particular order of
this series expansion. As it turns out, the temperature dependence in a4 does not control
the overall behavior of the system near Tc, so we will just assume that a4 is some positive
constant.

That leaves only a2, which we similarly expand:

a2 = a
(0)
2 +

T − Tc
Tc

a
(1)
2 + · · · .

Once again, though, we want to find η = 0 for T > Tc and η 6= 0 for T < Tc. Comparing
with Eq. 6.38, whose solution (for a1 = a3 = 0) is

η = 0 or η = ±
√
−a2

2a4

, (6.41)

we see that we want to set a
(0)
2 = 0 and a

(1)
2 to some positive constant to ensure that the

order parameter is non-zero below Tc. Thus

a2 =
T − Tc
Tc

a
(1)
2 + · · · , (6.42)

and as with a4, it is this lowest order term which dominates behavior near the critical point.
Finally, we now reintroduce the possibility of an external field. This breaks the even

symmetry of the system, and we know from the Ising model Hamiltonian that it adds an
a1 = −B term. Dropping some of the cumbersome notation and introducing a and b as
phenomenological constants, we have our final expression for the Landau free energy density
for the Ising model universality class in the absence of spatial variations:

L = −Bη + atη2 +
b

2
η4, where t =

T − Tc
Tc

(6.43)

In principle we are allowed by symmetry to now also add an a3 term; a calculation reveals that
it is not a leading term near the critical point, so we’ve neglected it for now. In general, L is
constructed by writing down all possible scalar terms which are powers of the order parameter
(or the order parameter components, if the order parameter itself is more complicated than
a scalar that are consistent with the symmetry of the system.

Critical exponents

For the above L, we now compute a few critical exponents. The β exponent is the one that
characterizes the divergence of m with t below Tc. From the above, we already know that

η =

√
−at
2b

, (6.44)
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so we read off β = 1/2.
We next differentiate L with respect to η to find the magnetic equation of state:

B = 2atη + 2bη3. (6.45)

On the critical isotherm (t = 0) we immediately see B ∼ η3, and this is our δ = 3 exponent.
The isothermal magnetic susceptibility is

χT =
∂η(B)

∂B

∣∣∣∣
T

=
1

2 (at+ 3bη(B)2)
, (6.46)

where η(B) is the value of the order parameter in the presence of the external field, i.e., the
solution to Eq. 6.45. The exponent γ characterizes the divergence of the susceptibility at
zero field. For t > 0 we know η = 0 so χT = (2at)−1. For t < 0 we know η = (−at/b)1/2 so
χT = (−4at)−1. In either case, γ = 1.

Ignoring fluctuations... not variations

We very briefly note that Landau theory neglects the (important!) effects of fluctuations, but
it does not only apply to homogeneous systems. It is straightforward to generalize the ideas
above to the case where the order parameter can be a spatially varying one: η = η(r), and
if this were a class on statistical field theory we would spend a lot of time thinking about
these cases (this would also let us write down critical exponents related to the divergence of
correlation lengths in the system). When we do treat spatially inhomogeneous systems, we
need to add the constraint that

5. L should be a local function, depending only on a finite number of spatial gradients of
the order parameter.

As with the earlier construction, the gradient terms we write down must be consistent with
the symmetry of the system; for the Ising model where we keep only even terms, the lowest
order term is the square of the gradient, which would give the Landau free energy of

L =

∫
dr
[
L (η(r)) + ζ (∇η(r))2] , (6.47)

where ζ is some new positive constant and L is the homogenous L of the preceding notes. In
general for this symmetry there are also terms like (∇η)4 and (∇2η)2), etc., and here we’ve
just written the lowest order gradient term12.

Just a note about statistical field theories.
12“Why isn’t there a term like η∇2η, which is of the same order as the term we did use, it’s perfectly

isotropic, and it has the right m→ −m symmetry?” I hear you asking. The above form is customary because
we know the identity

∇ · (η∇η) = η∇2η + (∇η)2,

which implies ∫
dr η∇2η = −

∫
dr (∇η)2 +

∫
dS · η∇η.

In the thermodynamic limit we neglect the surface term, so in general we pick either (∇η(r))
2

or η∇2η, but
not both.
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6.6 Correlations and fluctuations

Having introduced the idea that the order parameter might have spatial variations, we now
introduce a dimensionless two-point correlation function:

G(r − r′) =
1

η̄2

[
〈η(r)η(r′)〉 − η̄2

]
=

1

η̄2
〈(η(r)− η̄) (η(r′)− η̄)〉 . (6.48)

This quantity measures correlations between the fluctuations of the order parameter at dif-
ferent distances13, and it is deeply linked to some of the thermodynamic properties of the
system.

For instance, suppose as the order parameter we chose the spatially varying density field,
ρ(r). The total number of particles is N =

∫
ddrρ(r), and the integral over G is∫

ddrddr′G(r − r′) =
1

ρ2

∫
ddrddr′

[
〈ρ(r)ρ(r′)〉 − ρ2

]
=

1

ρ2

[〈
N2
〉
− 〈N〉2

]
. (6.49)

Translational symmetry gives us one of the integrals over G for free, and we recognize a
connection between the number fluctuations and the isothermal compressibility of the system.
Combing everything, then, gives us∫

ddrG(r) = kBTκT . (6.50)

This is an example of a fluctuation-susceptibility relation, and is the equilibrium limit of the
more general fluctuation-dissipation relation.

6.6.1 Correlation function for a specific model

To be definite, let’s calculate the two-point correlation function for a system described by
the Ising universality class Landau theory. The spatially varying order parameter will be
η(r), the external field will be B(r), and we’ll write the Landau free energy as

L =

∫
ddr

[
(at)η2 +

1

2
bη4 −Bη +

c

2
(∇η)2

]
, (6.51)

where a, b, c are phenomenological parameters and t is the reduced distance to the critical
point. If the system was uniform we would relate the typical value of the order parameter to
the appropriate derivative of the free energy: 〈η〉 = − ∂L

∂B
. In the presence of spatial variations,

these partial derivatives get replaced by functional derivatives.

Functional differentiation

Suppose F [η(r)] is a functional14 of η(r). The functional derivative of F with respect to the
function η is defined as

δF

δη(r′)
= lim

ε→0

F [η(r) + εδ(r − r′)]− F [η(r)]

ε
. (6.52)

13We have assumed translational symmetry in writing G(r − r′); more generally we would have G(r, r′)
14Just as a function is a map – accepting, say, a set of numbers and returning an output number – a

functional is a map that accepts a function of a set of numbers and returns an output number
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This generalizes the definition of the usual derivative, and the operation satisfies properties
like

δ

δη(r)

∫
ddr′η(r′) = 1

δ

δη(r)
η(r′) = δ(r − r′) (6.53)

δ

δη(r)

∫
ddr′

1

2
(∇η(r′))

2
= −∇2η(r).

That last expression, which you probably can see that we’re about to use, involves an inte-
gration by parts that neglects the surface term.

Linear response

With those definitions, we compute the expectation value of the order parameter via func-
tional differentiation:

〈η(r)〉 = − δL

δB(r)
. (6.54)

This implies that a small change in the external field would cause a small change in the
Landau energy

δL = −
∫

ddr′ 〈η(r′)〉 δB(r′). (6.55)

Since the susceptibility is a measure of how the order parameter changes when the field
changes, we have

χT (r, r′) = − δ

δB(r′)

(
δL

δB(r)

)
. (6.56)

Treating L as if it is related to a partition function, L = −kBT logZ (for the purposes of
remembering which thermodynamic derivatives we want to take), we re-write this as

χT (r, r′) = kBT

[
1

Z

δ2Z

δB(r)δB(r′)
− 1

Z

δZ

δB(r)

1

Z

δZ

δB(r′)

]
= β [〈η(r)η(r′)〉 − 〈η(r)〉 〈η(r′)〉]
= βG(r − r′), (6.57)

again connecting response functions with correlation functions. Note that, using tildes to
denote Fourier transforms, one connects isothermal susceptibility with the wave-vector de-
pendent susceptibility χ̃(k) = βG̃(k) as

χT ≡ lim
k→0

χ̃(k) = β G̃(k)
∣∣∣
k=0

= β

∫
ddrG(r), (6.58)

as in Eq. 6.50.
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The correlation function

Enough dithering, let’s calculate the two-point correlation function from Eq. 6.51. To do
this, we extremize the Landau free energy to find the spatially varying field that the system
will adopt in equilibrium. I.e., we set δL

δη(r)
= 0. This tells us that η(r) must satisfy

2atη(r) + 2bη3(r)−B(r)− c∇2η(r) = 0. (6.59)

We then (functionally) differentiate this expression with respect to the spatially varying field:

δ

δB(r′)

[
2atη(r) + 2bη3(r)−B(r)− c∇2η(r)

]
= 0

⇒ β
[
−c∇2 + 2at+ 6bη2(r)

]
G(r − r′) = δ(r − r′). (6.60)

Well, would you look at that! The correlation function is a Green’s function; seems like a
retroactively good reason to have used G for it...

We can simplify the above expression by noting that for translationally invariant systems
the order parameter η we want is just the equilibrium value from the homogenous Landau
theory calculation we did earlier: η = 0 for t > 0 and η = ±

√
−at/b for t < 0. We now

introduce the correlation length, ξ, noting that G(r − r′) satisfies(
−∇2 + ξ−2(t)

)
G(r − r′) =

kBT

c
δ(r − r′), (6.61)

where

ξ(t) =

{ √
c

2at
for t > 0√

− c
4at

for t < 0

}
∼ |t|−1/2. (6.62)

Great, given that G(r−r′) satisfies such an equation, what does it look like? The Fourier
transform of Eq. 6.61 gives

G̃(k) =
kBT

c

1

k2 + ξ−2
. (6.63)

Evaluated at k = 0, this gives us the isothermal susceptibility (a measurable quantity for
the system) in terms of the microscopic parameter c and the correlation length:

χT = βG̃(0) =
ξ2

c
,

with which we can write the two-point correlation function as

G̃(k) =
kBTχT (t)

1 + k2ξ2
. (6.64)

In real space one can take the inverse Fourier transform (i.e. “look it up in a table”), or one
can solve the real-space differential equation in polar coordinates. I’ll spare you the details
for now. Using the correlation length as our unit of length and defining ρ = r/ξ, the result
is:

c

kBTξd−2
G(ρ) =

{
e−r/ξ for d = 1

K d−2
2

(r/ξ)

(2π)d/2(r/ξ)(d−2)/2 for d ≥ 2
, (6.65)
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where the Kn are modified spherical Bessel functions of the third kind. We really are most
interested in the short- and long-range behavior of these functions, which are

Kn(x) ∼
(
π
2x

)1/2
e−x, for x→∞

Kn(x) ∼ Γ(n)
2

(
x
2

)−n
, for x→ 0 (6.66)

K0(x) ∼ − log x , for x→ 0.

Combining everything, very close to Tc the correlation length has diverged, so we just
need the r � ξ limit of the Kn. For d = 2 we use the special log form appropriate to K0,
and for d > 2 all of the powers of ξ conveniently cancel out, giving us

G(r) ∼
{

log (ξ/r) for d = 2
r2−d for d > 2

. (6.67)

Far from the critical point, though, ξ is small; taking the r � ξ limit of the Kn gives (for
d ≥ 2)

G(r) ∼ kBT

c

exp (−r/ξ)
r(d−1)/2

1

ξ(d−3)/2
, (6.68)

where I’ve dropped prefactors related to 2’s and π’s for simplicity.

Comments on the correlation length

From the preceding analysis, and from the definition of G(r), we see that ξ is a measure
of the spatial extent over which correlations extend. In mean field models of the Ising type
we predicted ξ ∼ |t|−1/2; far from the critical temperature the correlation length will be
on the same scale as something microscopic (distance between spins, or the range of the
attractive part of the Lennard-Jones interaction, or...), and any fluctuations in the local
order parameter away from the average value will quickly wash out.

As T → Tc, though, ξ → ∞, and correlations can extend over the entire system. Even
though the actual interactions in the system are short-ranged, long-range order can prop-
agate. Since the correlations are essentially macroscopic, the microscopic differences that
distinguish one system from another likely are irrelevant at such macroscopic scales; this is
an important clue for building a general understanding of critical phenomena.

6.7 Critical exponents

We pause to briefly summarize (and comment on) the most important critical exponents
that characterize various systems. In all of these cases we are investigating the idea that,
close to the critical point, some thermodynamic quantity has the limiting form of a power
law. Letting t = (T − Tc)/Tc and looking a quantity f , when we write

f(t) ∼ tλ

what we mean is

λ = lim
t→0

log f(t)

log t
. (6.69)
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This is a particularly relevant point when remembering (a) there may be other, non-dominant
power law behavior near the exponent; we are capturing just the leading order term, and (b)
sometimes we quote an exponent as having the value zero. This can either mean that the
thermodynamic quantity has a discontinuity or that it has a logarithmic divergence rather
than a power-law one. This last possibility comes from comes from using the identity

log t = lim
λ→0

[
1− e−λ log t

λ

]
= lim

λ→0

[
1− t−λ

λ

]
. (6.70)

Suppose we are considering a system with Landau free energy L, order parameter m, and
ordering field B.

δ : All critical exponents except for this one are evaluated at B = 0. In the presence of the
field, though, δ characterizes the relationship between the field and the order parameter:

m ∼ B1/δ. (6.71)

α : The divergence of the heat capacity is measured via α. In principle, the divergence
could be different on the two sides of the transition, which is commonly denoted by writing
α for the divergence above Tc and α′ for the divergence below Tc.

C = −T ∂
2L
∂T 2

∼ |t|−α. (6.72)

In mean field α = 0 (in the form of a discontinuity); the Ising model has α = 0 (in the log
divergence form) for d = 2 and α ≈ 0.11 for d = 3.

β : Below the critical temperature, where the order parameter is non-zero, it diverges like

m ∼ |t|β. (6.73)

γ : The divergence of the low-field susceptibility is measured by γ; it, too, can in principle
have different values above and below the transition:

χ =
∂m

∂B

∣∣∣∣
B=0

∼ |t|−γ. (6.74)

ν : The last two critical exponents on this list are related to the behavior of the two point
correlation function. We did a mean-field calculation that suggested the correlation length
diverged near t = 0 like ξ ∼ |t|−1/2. There’s no reason to expect for real systems that the
mean field prediction here is correct, so we introduce ν:

ξ ∼ |t|−ν . (6.75)

Mean field theory for the Ising universality class has ν = 1/2, ν = 1, 0.63 in two and three
dimensional Ising models, respectively.
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η : Finally, we want to characterize how the two-point correlation function behaves precisely
at the critical point (t = 0). Our mean field theory (using the r � ξ limit of the Kn)
predicted that G(r) ∼ r−(d−2), and again, we expect real experiments could differ from this.
We introduce the exponent η to measure how wrong mean field is at t = 0:

G(r) ∼ r−(d−2+η). (6.76)

Mean field theory for the Ising universality class has η = 0, η = 1/4, 0.032 in the two and
three dimensional Ising models, respectively. Experimentally these small exponents are hard
to measure

6.7.1 Dimensional analysis and mean field theory

To emphasize just how surprising it should be that mean field theory gets the critical ex-
ponents wrong, and the surprising sense in which a diverging correlation length does not
mean that the system has completely forgotten about microscopic length scales, let’s write
a dimensionless version of the Landau free energy of the Ising type in the absence of an
external field:

βL =

∫
ddr

1

2
(∇φ)2 +

r0

2
φ2 +

1

4
u0φ

4. (6.77)

In terms of our earlier expressions, this is just writing

φ = η
√
βc, r0 =

2at

c
, u0 =

2b

βc2
. (6.78)

Let’s think about the correlation function in terms of basic dimensional analysis. Using the
bracket notation to denote the dimension of various quantities, we have [βL] = 1 (i.e., is
dimensionless), so each separate term in the integrand must be dimensionless, too. Thus:[∫

ddr(∇φ)2

]
= 1⇒ (xd)(x−2) [φ]2 = 1, (6.79)

where x denotes units of length. From this, we immediately get

[φ] = x1−d/2, [r0] = x−2, [u0] = xd−4. (6.80)

So, what does dimensional analysis say about the correlation length? Clearly [ξ] = x,
but from the above equation the only independent quantity with units of length is r0, with
dimensions [r0] = x−2. So, apparently, we’re done: by dimensional analysis we get that

ξ ∼ r
−1/2
0 ∼ |t|−1/2,

where in the last line we remember that r0 ∝ t. In some sense, then, the deep mystery is
how could this have been wrong?

The answer is that we ignored one other source of an independent length scale in our
dimensional analysis! In particular, there is a microscopically small length scale embedded
in the problem – say, the spacing between lattice sites in our Ising model – an apparently if
mean field is wrong we need to include this length scale.
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How does this solve our problem? Let’s call this microscopic length λ, with [λ] = x, of
course. By dimensional analysis we can conclude that

ξ = r
−1/2
0 f(r0λ

2), (6.81)

where f is some function we know nothing about (yet). We’ve written it this way, though,
because r0 ∝ t and λ is independent of t, so near the critical point we are interested in
limz→0 f(z). If, for whatever reason, it so happens that

f(z) ∼ zθ (6.82)

as z → 0, then as the critical temperature is approached we get

ξ ∼ t−1/2+θλ2θ. (6.83)

The exponent θ, characterizing the difference between an observed divergence of the corre-
lation length and the prediction from Landau theory, is called the anomalous dimension.

Notice something remarkable that’s happened here: we have been emphasizing that near
a critical point the diverging correlation length sweeps away any microscopic details, and we
are used to assuming that when trying to explain phenomena at one scale we can disregard
phenomena at much shorter scales15. Apparently near the critical point this idea is not quite
right: the very existence of a microscopic length scale allows for an anomalous dimension /
departure from mean field theory. In general, although not a priori guaranteed, the value
of the anomalous dimension does not depend on the microscopic length scale itself. Thus,
near a critical point we expect that the scaling of various quantities, the way they diverge
near the critical point, to be universal, but there is no reason to expect the prefactors of the
scaling relations to share that universal character.

6.8 Scaling hypothesis

We just described a set of critical exponents that characterize the behavior of systems near
their critical point; let’s stare at a table16 for a moment:

Ising Ising Ising Percolation 4-State Potts Directed percolation XY model
(MF) (d = 2) (d = 3) (d = 3) (d = 2) (MF) (d = 3)

α 0 0 0.11 -0.625 2/3 −1 −0.015
β 1/2 1/8 0.327 0.418 1/12 1 0.349
δ 3 15 4.79 5.3 15 2 4.78
γ 1 7/4 1.24 1.793 7/6 1 1.32
ν 1/2 1 0.63 0.88 2/3 1/2 0.67
η 0 1/4 0.036 0.046 1/4 0 0.038

15“Don’t model bulldozers with quarks” – Goldenfeld and Kadanoff, Science 284, 87 (1999)
16Anything that is not an integer should be assumed to be approximate. Sources are wikipedia (where there

are tables of critical exponents for many more models), plus https://arxiv.org/pdf/cond-mat/9701018.pdf for
the Potts model
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In the early 60s, as mean field results were known and as some finite-dimensional estimates
were obtained by numerical estimates, people started noticing that these exponents did not
seem to be independent. For instance, the exponent values seem to satisfy

α + 2β + γ = 2 (6.84)

γ − β(δ − 1) = 0 (6.85)

γ − ν(2− η) = 0, (6.86)

which are often called the Rushbrooke, Widom, and Fisher identities, respectively. Since
then, there have been various proofs that thermodynamics requires (via, say, the convexity
of the free energy, or the relative sizes of CP and CV certain inequalities to be satisfied, for
instance

α + 2β + γ ≥ 2,

but that in the actual data these thermodynamic inequalities are saturated.

6.8.1 The static scaling hypothesis

The static scaling hypothesis17 is an attempt to encode multiple features of the behavior
of a system near the critical point in a single expression; as we will see, assuming this
hypothesis allows one to strengthen the thermodynamic inequalities mentioned above for
the relationships between exponents into equalities – which is good, because the equalities
are satisfied.

Let’s focus on a magnetic system, where just to keep you on your toes I’ll write m for the
magnetization and h for the external field (in units of kBT ); t will still stand for the reduced
distance to the critical point. We want to simultaneously encode two things we have already
seen:

m(t = 0, h) = ±C1|h|1/δ and m(t, h = 0) =

{
0 t > 0

±C2|t|β t < 0
. (6.87)

One of Widom’s many insights was that, staying in a regime where |t| � 1 and |h| � 1,
both of these results can be expressed as

m(t, h) =

{
tβF+(h/t∆) t > 0

(−t)βF−(h/(−t)∆) t < 0
, (6.88)

where we assume that β and the gap exponent ∆ are universal, as are the scaling functions
above and below the critical temperature, F+ and F−. At first glance we don’t know very
much about these scaling functions, but the requirement that Eq. 6.88 reproduce the results
in Eq. 6.87 will let us both put some constraints on F+ and F− and also derive relationships
between the critical exponents.

First, we’ll show that the gap exponent is actually not a new critical exponent at all!
Consider the susceptibility in the low-field limit, χT ∝ ∂m

∂h

∣∣
h=0

. Differentiating Eq. 6.88 with
respect to h gives

χT ∝ |t|β
∂F±(h/|t|∆)

∂h

∣∣∣∣
h=0

∝ |t|
β

|t|∆
∂F±(x)

∂x

∣∣∣∣
x=0

∼ |t|β−δF ′±(0). (6.89)

17B. Widom, (1963)
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So, as long as the derivative of these scaling functions doesn’t either diverge or vanish as the
argument goes to zero, we can connect the gap exponent to a critical exponent we’ve already
encountered:

β −∆ = −γ. (6.90)

Next, let’s see what happens by requiring that Eq. 6.88 reproduces the results in Eq.
6.87. First, we take the small field limit of Eq. 6.88 and match it to the zero field result

m(t, h) =

{
tβF+(0) t > 0

(−t)βF−(0) t < 0
=

{
0 t > 0

±C2(−t)β t < 0
(6.91)

This already gives us some constraints on the scaling functions, namely

F+(0) = 0 and F−(0) = (some finite constant). (6.92)

We also want to reproduce the result for the magnetization along the isotherm in the
presence of a field (m ∼ h1/δ), so we look at the limit t→ 0 while keeping h small and finite.
This amounts to looking at the scaling functions in the limit that their argument diverges,
but we also know that in this limit m is well-behaved. How do we reconcile the situation?
We assume that both scaling functions adopt a power-law form for large argument:

F±(x) ∼ xλ. (6.93)

Making this assumption, the magnetization as the critical isotherm is approached is

m(t→ 0, h) ∼ |t|β
(

h

|t|∆

)λ
∼ |t|β−λ∆hλ. (6.94)

On the critical isotherm, though, we need the t-dependence of this expression to cancel out
(otherwise we would get the incorrect result that either m = 0 or m =∞, depending on the
sign of the exponent of |t|). We therefor have the simultaneous requirements

β = λ∆ and λ = 1/δ. (6.95)

This both tells us that the scaling functions behave like

F±(x→∞) ∼ x1/δ (6.96)

and
∆ = β/λ = βδ. (6.97)

Combining the above result with Eq. 6.90 gives the Widom identity:

βδ = β + γ. (6.98)

The static scaling hypothesis, if true, suggests two powerful things. First, by derivations
like the above, it places constraints on the critical exponent that should be measured in
experiments or in exact theories (and, thus, also provides targets for approximate theories,
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Figure 6.3: Scaling plot for magnetization vs field near the critical point for the
“anhydrous compound with the formula

{[
MnII

2 (pydz)
] [

NbIV (CN)8

]}
n
,” taken at different

temperatures, with estimates of Tc ≈ 95.3, β ≈ 0.41, and γ ≈ 1.39. Data roughly extracted
from Pe lka et al.. Units on the plot have been suppressed.

if you’re into that kind of thing). Second, the assumption that the scaling functions are also
universal suggests an important way of plotting data!

For instance: suppose you were to measure the magnetization of a system as a function
of temperature and external field and then make a plot of m vs h, you’d get different curves
for each value of the field t. The static scaling hypothesis says that even if you have no
idea what the functions F± are, if you plot m/|t|β vs |h|/|t|β+γ then you should observe
data collapse, with all of your data falling onto two branches. To observe this collapse you
would need to know the right values for Tc, β, and γ (which you usually don’t know ahead
of time). An example of this kind of data collapse is shown in Fig. 6.3, where I pulled data
from an arXiv paper studying magnetization near the critical point of... let’s just say “some
material.” Manipulating data in order to observe scaling collapse is a way of estimating both
the location of the critical point and the values of the critical exponents, although it must
be done with care.

Before closing, we briefly mention that in addition to scaling laws relating the critical
exponents, there are also hyperscaling laws which involve both the critical exponents and the
dimension of space. These can be derived from, e.g., assuming that the correlation function
has a scaling form:

G(r, t, h) =
1

rd−2+η
F±G (r|t|ν , h

|t|∆
),

where we’ve added the subscript to FG since there is no reason that the scaling function for
the two-point correlations should be the same as the scaling function for the magnetization.
This scaling hypothesis leads to laws like the Josephson relation,

2− α = dν.

Hyperscaling laws are on a different footing than the scaling laws – they must be, and clearly
something must be afoot in mean field models, where the critical exponents stay the same for
all d > dc. We also mention that just as there are static scaling hypotheses there are dynamic
scaling hypotheses. These relate the relaxation time – the way that fluctuations from the
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typical order parameter decay away – to the correlation length, and bring with them both
new critical exponents and new relationships between those exponents.

Finally, you may be wondering where these scaling laws in fact derive from. The main
physical idea is the diverging correlation length, ξ, is responsible for all of the singular
behavior near the critical point. We’ve already indicated that this vague statement cannot
be completely true, but the idea is the following: consider just the part of the free energy
density which has the singularity, and by dimensional analysis write it as

Ls
kBT

∼ ξ−d
(
c0 + c1

(
λ1

ξ

)π1
+ c2

(
λ2

ξ

)π2
+ · · ·

)
. (6.99)

Here the λi are a list of any microscopic length scales in the problem, the ci are coefficients
that depend at most weakly on temperature, and the πi > 0.

With those assumptions, in the t→ 0 limit the leading behavior is dominated by

Ls ∼ ξ−d ∼ |t|dν ,

and this immediately leads to the Josephson relation:

t−α ∼ C = −T ∂
2Ls
∂T 2

∼ |t|dν−2 ⇒ dν = 2− α. (6.100)

This, perhaps, feels a bit unsatisfying: we do not really know a priori that, given a quantity A
with [A] = xy we should always take the dimensionless quantity Aξ−y in our scaling theory
– why might it not be the case that we should take Aξz−yλ−z, mixing and matching the
diverging length scale with one of the microscopic ones? Ultimately, the answers to all of
these questions rely on the theory of the renormalization group: RG lets us see where scaling
hypotheses come from, it gives criteria for which measurables acquire anomalous dimensions,
allows us to calculate those anomalous dimensions, and (with a little bit of help) lets us derive
the particular forms of scaling functions.
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